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Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction 
to a key concept. This font also denotes text that is a placeholder for a word 
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, functions, operations, 
variables, filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer 
automatically prints to the screen. This font also emphasizes lines of code 
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value 
that you must supply.
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1
Introduction

This chapter starts with an outline of the manual and some use notes. It also 
provides information about getting started with the Optimization Module.

Using This Manual
This manual is a guide to performing engineering optimization using the 
Xmath Optimization Module.

To get the most out of the Optimization Module, you will need a working 
knowledge of Xmath and its MathScript analysis language. If you have 
never used Xmath, refer to the Xmath User Guide.

Document Organization
Chapters 2 through 4 of this manual focus on a single function. They define 
the mathematics of the problem solved by the function and provide 
step-by-step examples of problem solving sessions.

This manual includes the following chapters:

• Chapter 1, Introduction, starts with an outline of the manual and some 
use notes. It also provides information about getting started with the 
Optimization Module.

• Chapter 2, Nonlinear Programming, details the optimize function 
for general nonlinear programming. The optimize function is the 
most general and powerful function. It is fully integrated with Xmath 
and SystemBuild.

• Chapter 3, Quadratic Programming, details the quadratic 
programming function qpopt.

• Chapter 4, Linear Programming, details the linear optimization 
programming function lpopt.
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Commonly Used Nomenclature
This manual uses the following general nomenclature:

• Matrix variables are generally denoted with capital letters; vectors are 
represented in lowercase.

• G(s) is used to denote a transfer function of a system where s is the 
Laplace variable. G(q) is used when both continuous and discrete 
systems are allowed.

• H(s) is used to denote the frequency response, over some range of 
frequencies of a system where s is the Laplace variable. H(q) is used to 
indicate that the system can be continuous or discrete.

• A single apostrophe following a matrix variable, for example, , 
denotes the transpose of that variable. An asterisk following a matrix 
variable (for example, A*) indicates the complex conjugate, or 
Hermitian, transpose of that variable. 

Related MATRIXx Publications
For a complete list of MATRIXx publications, refer to Chapter 2, 
MATRIXx Publications, Help, and Customer Support, of the MATRIXx 
Getting Started Guide. The following MATRIXx publications are 
particularly useful for topics covered in this manual:

• MATRIXx Getting Started Guide

• Xmath User Guide

• Control Design Module

• Interactive Control Design Module

• Interactive System Identification Module, Part 1

• Interactive System Identification Module, Part 2

• Model Reduction Module

• Optimization Module

• Robust Control Module

• Xµ Module

x'
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Additional Related Publications
The following additional references on optimization also are useful for 
topics covered in this manual: 

• “An Extension of Karmarkar’s Algorithm and the Trust Region 
Method for Quadratic Programming,” Progress in Mathematical 
Programming, Y. Y. Ye, N. Megiddo, editor, Springer-Verlag, 1989.

• Linear and Nonlinear Programming, Luenberger, D. G., Addison 
Wesley Publishing Company, 1987.

• Ph.D. Dissertation, Y. Y. Ye, Department of Engineering, Economic 
Systems, Stanford University, 1987.

• Practical Optimization, Gill, P. E., Murray, W. and Wright, M. H., 
Academic Press, 1981.

MATRIXx Help
Optimization Module function reference information is available in the 
MATRIXx Help. The MATRIXx Help includes all Optimization functions. 
Each topic explains a function’s inputs, outputs, and keywords in detail. 
Refer to Chapter 2, MATRIXx Publications, Help, and Customer Support, 
of the MATRIXx Getting Started Guide for complete instructions on using 
the Help feature.

Getting Started
Before using the Optimization Module, you should feel comfortable with 
the following:

• Creating/editing text files in your computer’s operating system

• Creating Xmath MathScript functions (MSFs)

• Creating, editing, and addressing vectors and matrices

• Saving and loading data

• Plotting

If you intend to use the optimize( ) function with nonlinear dynamic 
systems, you also should familiarize yourself with SystemBuild. You will 
want to know how to do the following:

• Build system models

• Linearize nonlinear models

• Generate time responses



Chapter 1 Introduction

MATRIXx Xmath Optimization Module User Manual 1-4 ni.com

When you know the Xmath and SystemBuild basics, you are ready to begin 
optimization. Complete function syntax and examples are available online. 
This document discusses details pertaining to each algorithm and suggests 
problem solving techniques. Application examples are provided for each 
function. 

Each example includes the following procedures:

• Problem Setup

• Syntax Options

• Analysis
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2
Nonlinear Programming

The optimize( ) function solves the general nonlinear programming 
problem shown in Equation 2-1.

(2-1)

where p is the n ×  1 vector of optimization parameters must be real.

F(p) is the scalar valued cost (objective) function.

G(p) is the vector valued equality constraint function.

H(p) is the vector valued inequality constraint function.

hl and hu are the lower and upper limits for the inequality 
function.

pl and pu are the lower and upper limits for the optimization 
parameters.

In general, F(·), G(·), and H(·) are any nonlinear functions that can be 
specified and computed using Xmath or SystemBuild. The constraint 
equations and parameter bounds need not be specified. This flexibility 
results in a wide variety of problem solving capabilities, which are 
illustrated in the examples in this chapter.

Optimize( )
[P,Jh,L,H,IC,Ph]=optimize(P0,{Pmin,Pmax,ICmin,ICmax,L0,

H0,IC0,rho,majit,minit,delta,tol})

Conditions and parameters for operation of the function that invokes the 
optimize( ) function are set up in two places:

• The user furnishes the values of the cost and constraints through a 
MathScript function (MSF) named COST( ), which is executed by 
optimize( ) whenever it needs the appropriate functions for a set of 

min F p( )
p

G p( ) 0=

hl H p( ) hu≤ ≤

pl p pu≤ ≤
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candidate parameters evaluated. optimize( ) computations include 
the cost function F(p), an optional equality constraint function G(p), 
and an optional inequality constraint function H(p).

• All other parameters are specified as parameters of the optimize( ) 
function call, including: 

– Initial values and bounds for the optimization parameters

– Bounds for the inequality constraint equations

– A penalty parameter controlling the search for a feasible solution

– Maximum numbers of major and minor iterations

– Numerical gradient perturbation parameters

– A tolerance parameter on optimality and feasibility

For a detailed description of each optimize( ) input, output, and 
keyword, refer to the Xmath Help.

Running Optimize( )
The Optimization Module provides an interface between MathScript and 
graphical modeling in SystemBuild. As shown in Figure 2-1 and in the 
following procedure, running optimize( ) in Xmath is a straightforward 
process.

Figure 2-1.  Running Optimize( )

1. Create a MathScript function (MSF) named cost.msf( ) using any 
text editor. Your function computes the cost that is to be minimized and 
also calculates the constraint functions.

2. Specify input variables and execute the optimize( ) function. 
optimize( ) calls the cost.msf( ) as many times as its operations 
require.

Create MSF using text editor

Analyze results; re-optimize as needed

Run optimize in Xmath
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3. As the algorithm executes, you can monitor its progress by displaying 
intermediate values and/or creating plots in the cost function. Upon 
completion, all results are returned to Xmath’s command level for 
quick access to the Xmath system analysis, post processing, and 
simulation capabilities. To save any of the variables computed by the 
cost function, use the Xmath SAVE command or select File»Save All 
from the Xmath Commands menu. 

The objective function and any constraint functions are specified in 
cost.msf( ). This means that any dynamic or static system performance 
measure can be defined quickly and easily. Waveform math, matrix algebra, 
frequency response analysis, and time simulations are some of the 
operations that can be used in defining problems. Example 2-1 is a template 
for cost.msf( ).

Example 2-1 Template for cost.msf( )

# cost function syntax:

function [out]=cost(p,it)

#{ p is the list of parameter vectors cost.msf uses to evaluate

the cost and constraint function values. 

it (iteration) informs the cost function that optimize() has

completed a major or minor iteration:

it<0 a minor iteration has completed a gradient evaluation

occurs once per minor cycle)

it=0 a gradient or search evaluation

it>0 major iteration completed 

}#

cost_at_p = (    ) # insert cost to be minimized (scalar):

equality_at_p = (    )  #{ compute value(s) of equality function(s)

and place them in the variable equal (a column vector). Skip this step 

if equality constraints are unnecessary. 

}#

inequality_at_p = (    ) #{compute value(s) of inequality

function(s) and place them in the variable inequal (a column vector). 

If inequality constraints are specified, the number of values must 

match the number of upper and lower inequality constraints specified 

in the optimize call. Skip this step if inequality constraints are 

unnecessary.

}#

#{ put results in out, omitting any variables that were not

computed above.

}#
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out=[cost_at_p;equality_at_p;inequality_at_p];

#{ display or store any intermediate results here using the

variable it to determine points of major and minor

iterations.

}#

endfunction

The cost( ) function accepts the column vector of optimization 
parameters p and the scalar variable it, and returns the argument out. 
In the body of cost( ), the user specifies how p will be used to compute 
the cost( ) function and (optionally) any equality and/or inequality 
constraints. Any command or function that can be issued at the Xmath 
prompt can be used to compute these performance measures. 
optimize( ) calculates the number of constraints by finding the size of 
out (the variable returned by the cost function) and determines the number 
of inequality constraints by checking IC0. If m equality constraints and 
n inequality constraints are specified, the out vector returns (m + n + 1) 
elements ordered as shown in Table 2-1.

The iter input parameter informs cost( ) of the completion of a major 
or minor iteration. iter signals any one of three possible conditions in the 
optimization process after that event has occurred as shown in Table 2-2.

The iter input parameter can be used to customize the run-time 
information displayed on the screen (or in the log file, if the optimization 
job is run in batch mode). Data can be analyzed, displayed, plotted, or saved 

Table 2-1.  Out Vector

Position Description Optional (y/n)

1 Objective (COST) n

2: m + 1 Equality Constraints y

m + 2: m + n + 1 Inequality Constraints y

Table 2-2.  Iter Possibilities

Condition Situation

iter < 0 The gradient evaluation

iter = 0 Gradient or search evaluation

iter > 0 Major iteration completed
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to the disk at minor and/or major iterations. The optimize( ) process is 
illustrated in the examples given in the Application Examples section. Both 
unconstrained and constrained nonlinear optimization problems are set up, 
implemented, and solved. The Optimize Algorithm section details how the 
optimize( ) algorithm works and the Practical Considerations section 
discusses some practical approaches that aid in using optimize( ) 
effectively and efficiently. Detailed demo files supporting the examples in 
the Application Examples section are included with the software so you can 
follow along with the text and quickly come up to speed with optimization.

Practical Considerations
The optimize( ) algorithm has been designed to handle a broad range of 
engineering problems with as few restrictions on problem definition as 
possible. The following subsections discuss several points to consider 
when using optimize( ). In most situations, following these guidelines 
will mean faster and more efficient convergence.

Finding a Feasible Solution
A feasible candidate solution should at least meet all the constraint criteria, 
even if it is not optimal or near optimal. If optimize( ) is having 
difficulties converging to a feasible minimum for a constrained 
optimization problem, try altering the original problem to help 
optimize( ) solve it more efficiently. One way to do this is to modify 
cost( ) so that it keeps the cost constant whenever the error in the 
constraint equation—that is, the difference between the current candidate 
parameter and the feasible range—is large. This means that the true cost 
will be computed only when optimize( ) has found a feasible (or near 
feasible) solution. Forcing optimize( ) to concentrate on finding a 
feasible region before searching for an optimal solution will get the best 
results from the algorithm. 

Specifying the Penalty Parameter
The penalty parameter, ρ, is used to control the distance that the 
optimization search is allowed to travel outside the feasible range to seek 
an optimal solution. A value of this parameter greater than 1 forces the 
search to stay close to the known feasible range; a smaller value of ρ allows 
a broader range of searching. The default value, 1, allows an intermediate 
range of search. 
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Another way of understanding the role of the penalty parameter is as a 
weighting factor. The higher the value of ρ, the more emphasis will be put 
on bringing (or keeping) the parameters inside the feasible region. Be 
cautious when using large values of ρ, because a large ρ might make the 
problem ill-conditioned. NI suggests not exceeding ρ = 1,000. In most 
situations, the default value of ρ will result in good performance of the 
nonlinear optimization routine. In other cases, it may be necessary to 
specify a good initial guess for the penalty parameter. 

For smooth problems, several guidelines may help you find a good initial 
guess. If a good solution to a similar problem is known, the value of the 
penalty parameter from the successful optimization will provide a good 
first guess for the current problem. If you have absolutely no idea about 
how to find an initial penalty parameter, try ρ = 1. In most cases, difficulties 
associated with a poor initial choice for the penalty parameter can be 
avoided by specifying reasonable bounds on the parameters. 

For non-smooth problems, the difficulties associated with selecting a good 
initial penalty parameter are not as severe. In this case, a good strategy is to 
choose a large value for the initial parameter. This will help ensure that the 
subproblem will have the desired local minimum. If the penalty parameter 
from a successful optimization of a similar problem is available, start the 
optimization with a slightly smaller value of the successful penalty 
parameter. If no Help is available, try 10. Try to place reasonable bounds 
on the variables to reduce the problem’s sensitivity to the penalty 
parameter. 

In general, there is no systematic way of choosing the best value for the 
penalty parameter. Some problems can be extremely sensitive to this 
parameter, thus making subproblems poorly conditioned whenever the 
penalty parameter is too small or too large. It is important to remember 
what effect this parameter can have, and that it may only be possible to find 
a good value through trial and error. For more details, refer to the Penalty 
Functions section and the Penalty Parameters section of Practical 
Optimization.1

Evaluating Results
After the algorithm has completed the optimization, be careful to check that 
the optimal value meets any additional criteria implied by common sense. 
For example, the final result should be a true minimum; at least, it should 
be considerably smaller than the initial result.

1   Gill, P. E., Murray, W., and Wright, M. H., Practical Optimization, Academic Press, 1981.
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Reducing Constraints to Improve Performance and Efficiency
Constraints add a great deal of complexity to the general optimization 
problem. It is always advantageous for the user to simplify, reduce, 
or completely eliminate constraints. With general formulation of the 
optimize( ) function, several types of constraints are possible. Equality 
constraints and inequality constraints are the most general classification. 
These constraints can be linear or nonlinear in the optimization parameters. 
Optimization with inequality constraints is the most difficult problem to 
solve, and nonlinear constraints pose greater difficulties than linear 
constraints. With careful specification, constraints can be simplified and 
the optimization will be performed more efficiently and with fewer 
problems. 

Always check the constraint equation and first eliminate any redundant or 
unnecessary constraints. Next, try to replace or simplify any constraints, 
or replace the constraints with bounds on the parameters. In some cases, 
a transformation of variables will be helpful. The following problem,

can be converted into an unconstrained minimization problem by letting:

The problem then becomes to minimize:

If this is not possible, then try to turn nonlinear constraints into linear 
constraints. Finally, try to combine and simplify constraint equations to 
keep the same limitation on the problem using a smaller number of simpler 
equations. The effort of simplifying the constraints beforehand is a wise 
investment toward making the optimization process much more efficient 
and robust, but often it is difficult to decide when or how to make the 
modifications. 

Transformations can introduce very undesirable properties in the 
optimization problem—for example, discontinuities, periodicity in the 
optimization parameters, singularities, poor scaling, and a greater number 
of minima. For this reason, simplify the constraints only after full 

min x1 2+( )2 x2 1+( )2+

x1 0≥

x1 z1
2= and z2

z1
2 2+( )

2
z2 1+( )2+
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consideration of the pitfalls which may result. When in doubt, do not 
simplify.

Eliminating redundant parameters is as important as eliminating redundant 
constraints. The following transfer function is an example:

This expression has five parameters: a, b, c, d, and e. However, the same 
transfer function can be expressed as

where

 

This reduces the number of parameters from five to four.

Avoiding Discontinuities
Like most optimization algorithms, convergence of the optimize( ) 
function can be guaranteed only when the objective function and any 
constraint functions are sufficiently smooth. Discontinuities should be 
avoided whenever possible. Discontinuities can arise from seemingly 
insignificant sources in problem formulation and definition. Be careful 
to avoid these common pitfalls:

• Table Lookup—Linear interpolation table lookup functions are a 
common, but avoidable, source of discontinuities in the formulation of 
an optimization problem. Table lookups are continuous in the function 
along all interior points, but the first derivative of the function will be 
piecewise constant with linear interpolation. Because table lookups are 
often used to approximate continuous data, there is little or no loss of 
accuracy involved with providing a smooth approximation—for 
example, by using the spline( ) function in Xmath to smooth a 
linear interpolation.

• Piecewise Constant Functions—Piecewise constant functions such 
as non-interpolated table lookup and sampled data time histories can 
pose significant problems in optimization. If the resolution of a 
computation is coarse, numerical gradients will not be accurate. 

h s( ) as b+
cs2 ds e+ +
----------------------------=

h s( )
k1s k2+

s2 k3s k4+ +
------------------------------=

k1
a
c
---= k2, b

c
---= k3, d

c
---= and, k4

e
c
--=
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This results in slow convergence or poor algorithm performance. Two 
courses of corrective action may improve the performance of the 
algorithm:

– Interpolation (preferably with a continuously differentiable 
algorithm)

– Finer resolution (more samples) in the function

• Function Switching—Avoid situations where the objective function 
or any constraint functions contain computations that change in 
structure (switching from one formula to another) as a function of the 
parameter values. When such a function must be included, make sure 
that the function outputs and first derivatives match at all switching 
conditions.

• Iterative Algorithms—If you use an iterative algorithm to compute 
the objective and/or constraint functions and you have specified 
tolerances considerably larger than the machine constants, nontrivial 
discontinuities can occur. A common example occurs when a variable 
step algorithm is used to evaluate an integral; successive iterations of 
the optimization algorithm may result in varying local accuracy along 
the output trajectory. The function and/or its gradients will not be 
smooth functions of the parameters. In certain cases, the error can be 
substantial. This error can be avoided by using fixed step methods or a 
very small local error tolerance for the variable step method. Another 
option is to increase the size of the perturbation used in gradient 
step-size whenever this retains the integrity of the gradient 
computation. In most cases, it will be difficult to determine the proper 
balance between integration algorithm accuracy and the gradient 
perturbation, so try a fixed step integration algorithm.

NI advises that you define step size for numerical derivatives so 
changes due to perturbing the parameters are greater than the errors in 
the integration, or else you will end up with derivative of integration 
noise with respect to your parameters. For example, if the numerical 
integration is good to ±.01 and you expected results to change by .001 
when you perturb the parameter, you cannot tell the difference. You 
either can make the integration error specification tighter (a precision 
of .0001) or boost the perturbation so the expected change is 
one-tenth (.1).

When using SystemBuild, avoid using integration blocks or saturation 
blocks as limiters. If saturation is reached, optimize( ) does not get 
anything useful. Rather, make the signals sim outputs so that the 
optimization algorithm can use constraints to do the limiting.

These and other important considerations are discussed in greater 
detail in the Specifying the Penalty Parameter section.
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Controlling the Numbers of Major and Minor Iterations
In an attempt to achieve convergence, the optimize( ) function divides 
the general nonlinear programming problem into a series of linearly 
constrained nonlinear programming steps to approximate the actual 
nonlinear problem; these are the major iterations of the function. The major 
iteration linearizes the constraints and tries to find a feasible solution for the 
linearized problem. It then passes it to the minor iteration(s).

The minor iterations use quadratic methods to find a solution within the 
linear constraints. When the minor iterations are complete or a solution is 
found, optimize( ) returns to the major iteration. These ideas are 
illustrated in Figure 2-2.

Figure 2-2.  Major and Minor Iterations

Many optimization problems are sensitive to the number of either major 
or minor iterations, but it is difficult to give general rules for assigning 
these variables, because they are intensely problem-dependent. Ten is the 
default setting for the number of both major and minor iterations. This is 
intentionally generous; often performance can be enhanced with no loss 
of accuracy by using smaller numbers for either or both parameters. It is 
easy to study this effect, because the calls to the COST MSF contain the 
indication that this call is for a major or a minor iteration, and one can 
see if, for example, more minor iterations give an evidently better local 
solution, or if they are just a waste of time. 

Linearly 
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For some problems, the constraints influence the iterations greatly. This is 
true if the solution from the minor iterations falls beyond the true nonlinear 
constraints. If the solution to the constraints is twice as bad as the solution 
from the previous major iteration, ρ will be increased. If it is safely within 
the tolerances, ρ will be decreased.

The higher ρ is, the more important the constraints are. If ρ is small, it is 
more tolerant. If your problem is poorly behaved when the constraints are 
violated, you want to push the solution towards the constraints by 
increasing ρ and tightening the constraints. 

The constraint used in the minor iteration quadratic program is only a 
linear approximation. This means some inaccuracy may result because 
of nonlinearities in the actual constraints. If your constraints are highly 
nonlinear, you may want to reduce the number of minor iterations so 
that the linear approximation will be updated more often.

Optimize Algorithm
When given the general nonlinear programming problem, optimize( ) 
converts Equation 2-1 into Equation 2-2.

(2-2)

where G is a combination of G and H:

optimize( ) solves the problem by first constructing a 
linearly-constrained optimization problem with an Augmented 
Lagrangian objective function shown in Equation 2-3,

min F p( )
p̂

Ĝ p̂( ) 0=

p̂l p̂ p̂u≤ ≤

Ĝ
H p( ) s–

G p( ) 
 = Let

p̂
p
s 

 =

p̂u
pu
hu 

 
 

=

p̂l
pl
hl 

 
 

=
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(2-3)

where J is a numerical approximation to the Jacobian:

(2-4)

and  is the vector of Lagrange multipliers at step k (the first step,  
by default). This problem is solved with an iterative algorithm for the 
variables  and . For the new problem, the first step involves 
checking to see if  satisfies the linear constraints.

If  is not a feasible solution, Equation 2-4 is solved to generate a valid 
initial condition for subsequent iterations. 

Next, sequential quadratic programming (SQP) is implemented to solve 
Equation 2-3. You calculate the gradient vector  and update the Hessian 
matrix (Equation 2-5) of the Augmented Lagrangian objective of 
Equation 2-3 to obtain the second-order approximation to the objective 
function Φ ( ) in the quadratic programming (QP) problem in 
Equation 2-6. 

The Hessian matrix is updated as follows 
(Broyden-Fletcher-Goldfarb-Shanno):

where

then

(2-5)

min F p̂( ) ŷkĜ p̂( ) ρ
2
---Ĝ p̂( )TĜ p̂( )+ Φ p̂( )≡–

p̂

Jk p̂ p̂k–( ) Ĝ p̂k( )–=
p̂l p̂ p̂u≤ ≤

Jk
∂Ĝ p̂( )

∂p̂
---------------= p̂ p̂k=

ŷk ŷ0 0=

p̂k 1+ ŷk 1+
p̂k

J p̂ p̂k–( ) Ĝ p̂k( )–=

p̂l p̂ p̂u≤ ≤

p̂k

ĝk

p̂

∆p p̂k 1+ p̂k–=

∆g ĝk 1+ ĝk–=

H H 1
∆pTH∆p
---------------------H∆p∆pTH 1

∆gT∆p
----------------∆g∆gT+–=
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(2-6)

where H
k
 is a Hessian for Φ  and  is a gradient for the 

Augmented Lagrangian objective function Φ . 

The optimize( ) function uses the interior trust region method1 to reach 
an approximate solution for QP (Equation 2-6). A line search technique 
provides a step size for Equation 2-3 and is used to generate the minimal 
solution .

If the optimal QP solution  is both feasible and optimal for Equation 2-3, 
optimize( ) returns to the beginning. Otherwise, it updates the Hessian 
matrix (Equation 2-5) for the subproblem Equation 2-6 and solves the QP 
problem. This repeats until the optimal local solution is found or until the 
maximum number of minor iterations is computed. 

The final solution  and multiplier  that result from the QP process are 
 and . These values are returned to solve for the next subproblem 

(Equation 2-3). When Equation 2-3 converges to a local minimum  for 
Equation 2-2, the algorithm is complete.

Application Examples
This section illustrates a variety of applications for the optimize( ) 
function. The first example shows how to optimize( ) the volume of 
a box, the second solves a trajectory optimization problem, and the last 
optimizes the response of a third order nonlinear system. This group of 
applications demonstrates the approaches and procedures you will need to 
begin solving your own optimization problems. Each application has four 
phases:

• Problem Definition—Define the system and performance objectives.

• Formulation—Specify the system cost and constraint equations using 
Xmath and SystemBuild commands and functions in the cost.msf 
file.

1   Y. Y. Ye, Ph.D. Dissertation, Dept. of Engineering-Economic Systems, Stanford University, 1987.

min 1
2
--- p̂ p̂k–( )

T
Hk p̂ p̂k–( ) ĝk p̂ p̂k–( )+

p̂

Jk p̂ p̂k–( ) Ĝ p̂k( )–=
p̂l p̂ p̂u≤ ≤

p̂k( ) ĝk( )
p̂k( )

p̂

p̂

p̂ ŷ
p̂k 1+ ŷk 1+

p̂
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• Optimization—Use the optimize( ) function to compute and solve 
optimization problems.

• Analysis—Examine the preliminary solution. If the algorithm does 
not converge in the specified number of iterations, the optimize( ) 
function can be restarted. The algorithm can be run with different 
parameters or from another initial condition to test the assumptions 
about a local minimum.

To get the most out of these application examples, you should know how to 
create a MathScript function (MSF). For instructions on creating an MSF, 
refer to the MATRIXx Help or Xmath Basics.

Box Design
The objective of this example is to find the height, width, and length that 
give a box a total volume of 100 m3 and minimize the amount (surface 
area) of cardboard required. The situation is illustrated in Figure 2-3. The 
only restrictions are that each box side must be greater than 1 m and less 
than 10 m in length.

Figure 2-3.  Box Optimization

p1

p2

p3
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Formulation
As shown in Figure 2-3, the dimensions of the box are p1, p2, and p3. The 
top and bottom of the box have double flaps so that the surface area of the 
top and bottom is 4p1p2. The total surface area of cardboard required is as 
follows:

This is the quantity to be minimized and it will be returned as the first value 
from the cost.msf file. The second argument to be returned is the 
difference between the actual and desired volume: G(p) = p1p2p3 – 100.

This argument defines the equality constraint that requires the volume of 
the box to be exactly 100 m3. These equations are coded in a MathScript 
file named cost.msf. 

#Cost function for the box optimization problem.

function out=cost(p,iter)

out=[

4*p(1)*p(2)+2*p(2)*p(3)+2*p(1)*p(3) #  surface

p(1)*p(2)*p(3)-100];# vol -100

endFunction

In the cost.msf file, J(p) = out(1) and G(p) = out(2). In a 
directory of your choice, create cost.msf as shown in the Optimization 
section.

Now you are ready to run the optimization in Xmath. 

Optimization
To run optimize( ) on this example, complete the following steps:

1. Enter Xmath and define the parameter bounds for each dimension of 
the box:

pmin=ones(3,1);pmax=10*pmin;

2. Make p0 equal to the average of the upper and lower bounds, thus:

p0=(pmax+pmin)/2;

3. Execute the optimize( ) function:

[p,jh,l]= opti(p0,{pmin=pmin,pmax=pmax,

rho=1,majit=5,minit=10,delta=1e-6,tol=1e-6})

J p( ) 4p1p2 2p2p3 2p1p3+ +=
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The optimize( ) function computes successive estimates of the 
parameter dimensions and the error in the volume of the box. While 
running, optimize( ) displays the current major iteration and current 
minor iteration. The current value of the cost( ) function (J) is also 
displayed. These are output to the screen with each iteration until the 
maximum number of major iterations is reached or optimize( ) is 
completed.

In Example 2-2, optimize( ) returns the final parameter estimate p and 
the history of cost values (surface areas) jh after five major iterations are 
computed. l is the Lagrange multiplier.

Example 2-2 Running optimize( ) on the Box Dimensions

Beginning minor iteration 1

Beginning minor iteration 2

Beginning minor iteration 3

Updated parameters:    3.51798    3.51798    7.26982

Beginning major iteration 2, J=151.805

Beginning minor iteration 1

Beginning minor iteration 2

Beginning minor iteration 3

Beginning minor iteration 4

Beginning minor iteration 5

Beginning minor iteration 6

Updated parameters:    3.75321    3.75319    7.1079

Beginning major iteration 3, J=163.055

Beginning minor iteration 1

Beginning minor iteration 2

Updated parameters:    3.74731    3.74728    7.12137

Beginning major iteration 4, J=162.912

Beginning minor iteration 1

Updated parameters:    3.74724    3.74721    7.12165

Beginning major iteration 5, J=162.912

Beginning minor iteration 1

Updated parameters:    3.74723    3.74721    7.12166

Completed in 5 iterations

p (a column vector) =

3.74723

3.74721

7.12166

jh (a row vector) =   242    151.805    163.055…

l (a scalar) =   1.09409
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Trajectory Optimization (Zermelo’s Problem)

Problem Definition
In this example, a ship must travel through water where the current varies 
with (x,y) location. Given any initial point (xo, yo), you want to find the 
trajectory of the ship that will place it at the origin (0,0) in minimum time. 
In this example, assume that the ship travels at a constant speed V, that the 
current flows in the x direction, as shown in Figure 2-4, and that the speed 
of the current varies linearly with y position.

Figure 2-4.  Ship Trajectory Optimization Problem

Formulation
The problem solving strategy is to constrain the final (x,y) position of 
the ship to (0,0) and minimize the time it takes the ship to reach this origin. 
The cost( ) function parameters are the total time and the value of the 
steering angle at eleven evenly-spaced time points. The cost( ) function 
takes the inputs and simulates the motion of the ship over the time interval. 
It computes the final position and returns the total time employed and the 
final distance from the origin. 

y

x

V

0,0

xo,yo
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The first step is to write the equations of motion for the ship in the 
coordinate system of Figure 2-4.

Recall that the current acts only in the x direction and is a linear function of 
the ship’s y position.

The next step is to implement these equations in a SystemBuild block 
diagram where you can simulate the (x,y) ship position as the input angle 

 varies. 

The block diagram for the equations of motion is shown in Figure 2-5. It 
takes θ, calculates the right side of the differential equation, and integrates 
the velocities to give x and y positions. 

Before proceeding with the example, start SystemBuild and load the data 
file for this model from the demo directory appropriate to your operating 
system.

Figure 2-5.  Ship Block Diagram

build

load "$XMATH/demos/ship/ship.dat"

For V = 1, x· Vcosθ ky+=
y· Vsinθ=

y· sinθ=
x· cosθ y–=

k = –1

θ tk( )
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Initial conditions for this example are set in the SystemBuild integrator 
block at:

The cost( ) function for this example is shown in Example 2-3.

Example 2-3 cost( ) function

#{For clarity we use unnecessary calculations and temporary values in the 

code below. This slows down the optimization procedure.}#

function [out]=cost(p,iter)

theta=p(1:11);

tf=p(12);# final time

time=[0:.1:1]'*tf;# time vector

xy=sim("ship",time,theta,{simclock=0,simmessage=0});

temp=makematrix(xy);

xf=temp(1,11);

yf=temp(2,11);     # final x and y positions

r=xf**2+yf**2;# distance to the origin

out=[tf;r];# out=[objectv;eq_constr]

x=temp(1,:);y=temp(2,:);

if iter>0# plot at major iteration

plot(x,y,{xmin=-1,xmax=5,ymin=-2,ymax=3,keep})?

endif

endFunction

Note It is more efficient to define the single constraints than to have two constraints.

You can copy the previous cost function to your working directory with the 
following Xmath command:

fprintf("cost.msf","%s",read("$XMATH/demos/ship/cost.ms

f"),{reset});

This MSF takes an input steering angle (as a function of time) and 
computes the trajectory and final (x,y) position of the ship through the 
sim( ) function. The only tricky part of the cost( ) function is the 
specification of the course heading as a function of time. 

The set of steering angles (θ) is specified at 11 evenly-spaced time points 
(theta=p(1:11)). 

xo yo,( ) 3.5 1.8–,( )=

G1 p( ) x tf( )2 y tf( )2+ 0= =
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To determine the total time (the goal is to minimize the time to reach the 
origin), recompute the simulation time vector from the normalized time 
column vector time before each simulation: time=[0:.1:1]'*tf. 

This vector is the scaled time vector for the simulation. This gives the 
algorithm complete control over the total time needed to reach the origin. 
tf(p(12)) is returned as the first element of the out vector. This 
parameter will be minimized by the optimize( ) function. The sum 
squared of the terminal position (x,y coordinates) is returned as the equality 
constraint because you want the terminal position to be at the origin (0,0).

Note It is more efficient to define the single constraints G1(p) = x(tf)2 + y(tf)2 = 0 than to 
have two constraints.

The final line of the cost( ) function checks to see if a major iteration has 
been completed. Upon completion of an iteration, the cost( ) function 
plots the ship’s x,y trajectory. 

1. After the cost.msf file has been created, create the parameter bounds 
. As arbitrarily large numbers, they are not expected 

to have much effect on the convergence process. 

plower = [-2*pi*ones(11,1);0];

pupper = [2*pi*ones(11,1);20];

It is tempting to constrain the steering angle θ to be between 0 and 2π, 
or between −π and π, but this would prevent the ship from completing 
more than one circle.

2. For an initial guess at the correct steering trajectory, assume that the 
ship maintains a constant heading in the general direction of the origin.

p0 = ones(11,1)*pi*2/3;

3. We guess that the ship will take five seconds to reach the origin:

p0 = [p0;5];

4. Run the cost( ) function with the initial parameters. The graphics 
window displays a plot of trajectory from the initial parameter (refer to 
Figure 2-6).

cost(p0,1);

2π θ t( ) 2π≤ ≤–
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Figure 2-6.  Plot of Trajectory

Optimization
For the optimization phase, the penalty parameter rho is set to 1. The 
number of major and minor iterations are set empirically to 10 and 3. 
The tuning parameters have been reduced to cut the running time of the 
example. 

[p,jh,l]= opti(p0,{pmin=plower,pmax=pupper,

rho=1,majit=10,minit=3,delta=1e-4,tol=1e-2})

As the optimization proceeds, intermediate cost and constraint values are 
displayed, and updated parameters are output at each major iteration. A plot 
of the ship’s trajectory is also created at each major iteration. Optimization 
is completed in six iterations as shown in Example 2-4.

The final plot is shown in Figure 2-7. The initial parameter plot is included 
in the graph because cost.msf( ) uses the keep keyword with plot( ). 
If you do not want the plots combined, type erase in the Commands 
window command area before running optimize( ).
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Example 2-4 Optimization of Ship Trajectory

Completed in 6 iterations

p (a column vector) =

1.54072

1.7487

2.31885

2.39624

1.68404

2.19942

2.91508

3.23675

3.5521

4.06592

3.71046

5.36374

jh (a row vector) = 5    4.41321    4.77413    …

l (a scalar) = -16.5989

Figure 2-7.  Ship Trajectory Plot
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Analysis
The final time value is 5.36374. Figure 2-8 shows the initial response 
plotted with the final time value. To create this plot, type:

erase

cost(p0,1)

cost([p;5.36374],1)

Figure 2-8.  Initial versus Optimal Trajectory

This was a concise but very nonlinear trajectory optimization problem. Had 
you chosen a greater number of minor iterations, you might have obtained 
a faster or better solution. If the tolerance had been reduced, or allowed to 
run at default, the problem would have taken considerably longer to 
converge.

As previously illustrated, one useful feature of optimize( ) is the ability 
to change the iteration parameters and tolerances to help convergence at 
any intermediate point in the optimization process, without having to start 
over again or go through extensive work to compile, redefine, or resubmit 
the optimization job. 

Also, observe that the value of the constraint has been reduced by the last 
iteration, and the divergence from the origin of the last two iterations is 
scarcely visible in Figure 2-7.



Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-24 ni.com

Feedback Control Design

Problem Definition
In this example, you use optimize( ) to specify feedback control logic 
for the closed-loop system shown in Figure 2-9.

Figure 2-9.  Closed-Loop Control System Model

The objective is to find the values of the feedback gain parameters K1 and 
K2, along with the compensator coefficient parameters p1 and p2 such that 
the response at y from a step input at u is as good as the saturation specified 
in the actuator will allow. 

You want the output signal to follow the input step as closely as possible 
while keeping the maximum percentage overshoot less than 5% (refer to 
Figure 2-10). Your working strategy is to constrain the overshoot and hope 
that an acceptable settling time results. If the overshoot criteria are met, but 
the settling time is unacceptable, the problem can be reformulated.

The first step is to create a SuperBlock diagram based on the model (refer 
to Figure 2-9). The model system has a single input where the step input is 
applied, and a single output where the position response is measured.
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Figure 2-10.  Desired Step Response

Table 2-3 shows the parameters and their initial values and how they will 
be used in the SuperBlock. 

You can load the model shown in Figure 2-11 from the demo directory with 
the following command:

load ="$XMATH/demos/system/system.dat"

Table 2-3.  Parameters and Initial Values 

Block Parameter Value Parameter

compensator NUM=[p1, p2] [1,1] vector of numerator coefficients

compensator DEN=[1,p2] [1,1] vector of denominator coefficients

rate gain K1 1 rate gain

position gain K2 1 position gain

1.05 u(t)

1.00 u(t)

y(t)

step applied

t

overshoot limit
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Figure 2-11.  Closed-Loop SuperBlock

Alternatively, you can define a continuous SuperBlock called SYSTEM and 
build the model as shown in Figure 2-11. When defining the block named 
Compensator NUM DEN, use the values of the variables NUM and DEN. The 
form for the block compensator should duplicate the values shown in 
Figure 2-12 (from the Parameters tab of the SystemBuild Editor). When 
defining the gain blocks named rate gain and position gain, use the 
appropriate values of K1 and K2. Finally, parameterize NUM, DEN, K1, and K2 
in the appropriate blocks.
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Figure 2-12.  Designating Parameters

The SuperBlock SYSTEM contains a saturation block. You know in advance 
that saturation will not be reached, so this is acceptable for this example. 
However, saturation blocks, or any blocks that might introduce 
nonlinearities, should be avoided. If saturation is reached, optimization 
stops. Another way to handle this problem is to remove the saturation block 
and limit the signal with icmin=-1, icmax=1 as described in the Avoiding 
Discontinuities section.

After the SYSTEM model is built, create cost.msf, which uses the model 
to compute the performance parameters. You can copy the cost function to 
your working directory with the following Xmath command:

fprintf("cost.msf","%s",read("$XMATH/demos/system/cost.

msf"),{reset});

Because the SYSTEM model uses parameterized values as shown in 
Example 2-5, cost.msf must specify the partition name along with the 
variable name—for example, main.num—so that SystemBuild can find 
and update the values. 
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Example 2-5 Specifying Feedback Control Logic

Function [out]=cost(p,it)

main.num=[p(1), p(2)];

main.den=[1, p(2)];

main.k1=p(3);

main.k2=p(4);

t=[0:.1:10]';

u=ones(t);

[,y]=sim("SYSTEM",t,u,{simclock=0,simmessage=0});

# minimize the difference between the command and the output:

out(1)=norm(y-ones(y));

out(2)=100*(max(y)-1);  # percent overshoot

# plot at major iterations:

if it>0

plot(t,y,{keep})?

endif

endFunction

The cost.msf( ) function accepts model parameters in the K vector. 
First, the p vector is converted into the SystemBuild model parameters NUM, 
DEN, K1, and K2. Next, the time and simulation vectors are created and used 
to simulate the step response. After the output signal is returned, cost( ) 
computes the rise time and overshoot. Whenever a major iteration is 
completed, cost( ) displays the step response. The plot( ) function 
keeps the plots for final comparison.

Optimization
1. To view the initial step response, type the following values from 

Table 2-1:

p0=[1, 1, 1, 1]';

num=[p0(1), p0(2)];

den=[1, p0(2)];

k1=p0(3); k2=p0(4);

2. Analyze SYSTEM to verify it:

analyze("SYSTEM")

3. Try cost( ) with the initial parameters:

cost(p0,1)

The result in Figure 2-13 shows that the step response is stable, but the 
overshoot is greater than the required 5%.
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Figure 2-13.  Step Response with Initial Parameters

4. Start optimize( ).

Use the default value of ρ, 1. You are arbitrarily guessing you might 
need a large number of major iterations (20), but you are reducing the 
number of minor iterations to 5 in hopes of shortening running time. 
Set the perturbation parameter delta to 1 × 10–4 and the tolerance to 
1 × 10–3.

[P,JH,L] = opti(p0,{icmin=0,icmax=5,

pmin=zeros(4,1),pmax=ones(4,1)*100,

rho=1, majit=20, minit=5,delta=1e-4,tol=1e-3})

As the optimization proceeds, you will see the following warning in the 
commands window message area:

MINOR OPTIMIZATION ROUTINE DID NOT CONVERGE IN THE 

SPECIFIED NUMBER OF MINOR ITERATIONS. YOU MAY NEED TO 

INCREASE THE NUMBER OF MINOR ITERATIONS.

This message indicates an intermediate point in the processing. It does 
not imply that the algorithm has failed or that the solution is invalid. 
Optimization completes in seven iterations as shown in Example 2-6.
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Example 2-6 Optimization Iterations

Beginning major iteration 7, J=2.93744

Beginning minor iteration 1

Updated parameters:  2.88236  0.476158  0.527184…

Completed in 7 iterations

P (a column vector) =

2.88236

0.476158

0.527184

1.03561 

JH (a row vector) = 3.24032    3.14864    3.13624 …

L (a scalar) = -0.0115143

Figure 2-14.  System Responses

Analysis
optimize( ) computes a parameter set that drastically improves the step 
response of the closed-loop system. The overshoot is limited to 5% as 
shown in Figure 2-14.
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Figure 2-15 plots the initial step response against the final response.

erase

cost(p0,1)

cost([P;2.93744],1)

Figure 2-15.  Initial Step Response versus Optimal Response
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3
Quadratic Programming

Quadratic Programming (QP) finds a number of useful applications in 
engineering, finance, and operations research. Over the years, a number of 
techniques have been used, but recent algorithmic advances have made 
QP computation very efficient and robust. The Xmath Optimization 
Module employs this new class of algorithms in the function qpopt( ).

This chapter describes the structure and implementation of the QP solver. 
The QPOPT( ) Function section covers the mathematical formulation of 
the QP problem and qpopt( ) syntax. The QPOPT Algorithm section 
highlights the algorithmic details that make up qpopt( ). The application 
example in the Application Example section uses qpopt( ) to solve a 
nonlinear curve fitting problem.

QPOPT( ) Function
[p,y,jh] = qpopt(q,{c,a,b,xmin,xmax,tol})

The qpopt( ) function solves the quadratic programming problem.

(3-1)

where p is the n ×  1 vector of real optimization parameters

Q is the n ×  n quadratic cost matrix (symmetric) in the 
objective function

cT is the 1 ×  n linear cost vector

A is the m ×  n linear equality constraints matrix (optional)

b is the m ×  1 constraint vector

pl is the lower parameter bound

pu is the upper parameter bound

min 1
2
--- pTQp( ) cTp+

p
Ap b=

pl p pu≤ ≤
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Regarding the outputs:

p is the optimal solution

y is the optimal shadow price (vector of Lagrange multipliers 
for equality constraints)

jh is the history of objective function values over iterations

QPOPT Algorithm
The QP solver in the Xmath Optimization Module is an extension of 
Karmarkar’s interior point algorithm for solving the linear programming 
problem. The algorithm uses affine scaling transformation and 
optimization over a trust ellipsoid region. It creates a series of interior 
feasible points that converge to the optimal solution. 

Because the QPOPT algorithm is based on the interior point algorithm, it is 
more efficient than most common QP algorithms. Enhancements to the 
basic algorithm allow the solution to be computed to any user-defined 
accuracy. This also can mean substantial savings in situations where you 
require only five digits of accuracy instead of full machine precision. 
Together, these differences make the qpopt( ) utility an attractive and 
efficient means of solving the QP problem. 

The QP problem is defined as shown in Equation 3-1. Assume that the 
interior of the feasible region is not empty. From an interior solution p

k
, the 

qpopt algorithm first forms D = diag(d) as follows:

(3-2)

and then solves the Quadratic Programming optimality conditions for p 
and y:

(3-3)

where e is a vector of ones the same size as the p vector

y is the Lagrange multiplier for the equality constraint

m is the Lagrange multiplier at step k for the interior 
ellipsoidal trust region constraint

d j min pk
j pl

j– pu
j pk

j–,( )= for j 1 ...,, n=

D diag d( )=

min Qp µkD
2– p ATy cT µkD

1– e–+–+
p

Ap b=
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If p is not feasible or a satisfactory solution, set µk = 2µk and solve 
Equation 3-3 again for p and y. Otherwise, return pk = p. For more 
information about this algorithm, its convergence properties, and how 
it compares with other strategies, refer to the references listed in the 
Additional Related Publications section of Chapter 1, Introduction.

For a complete description of each qpopt( ) input, output, and keyword, 
refer to the qpopt topic of the MATRIXx Help.

Application Example

Curve Fitting with Quadratic Programming
This example shows how qpopt( ) is used to fit a polynomial equation to 
test data. Specific heat measurements for superheated steam are given as a 
function of absolute temperature in Table 3-1.

You want to fit this data to a second order polynomial:

Table 3-1.  Specific Heat Measurements for Superheated Steam

i T(k)

1 400 8.4944

2 425 8.5589

3 450 8.5800

4  475 8.6728

5 500 8.6924

6 525 8.8236

7 550 8.9816

cal
deg mol–( )

----------------------------Cp

Cp θ1T
2 θ2T θ3+ +=
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The problem is to find θ = [ θ1, θ2, θ3]T such that the sum of the squared 
estimation error is minimized. More formally,

noting that:

You can rewrite Equation 3-1 as:

or, 

which is the same as:

This is the unconstrained quadratic programming problem with:

Cp i( ) Cp θ T i( ),( )–[ ]

i 1=

7

∑

Cp θ T i( ),( ) Aθ=

T 1
2 T1 1

T 2
2 T2 1

… … …

T 7
2 T7 1

=

min
θ

Cp Aθ Cp Aθ–,〈 〉–

min
θ Cp

TCp 2Cp
TAθ θTATAθ+( )–

min
θ

1
2
---θT Qθ cTθ+( )

cT 2Cp
TA–=

Q 2ATA=
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Solving the Curve Fitting Problem
To solve the problem, set up the cost variables in Xmath by completing the 
following steps:

1. Enter the following:

set format shorte

T=[400:25:550]';

CP=[8.4944, 8.5589, 8.5800,8.6728, 8.6924, 8.8236,

8.9816];

A=[T^2, T, ones(T)];

C=(-2*CP*A)';

Q=2*A'*A;

Note All QP vectors must be column vectors.

2. Call qpopt( ):

[THETA,Y,JH]=qpopt(Q,{C=C})

The following results appear:

Problem is unconstrained.

Solvable unbounded, unconstrained problem.

The unique stationary solution has been found

THETA (a column vector) =

1.660190e-05

-1.276695e-02

1.096324e+01

Y (a scalar) = 0.000000e+00

JH (a scalar) = -5.283228e+02
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3. Find the predicted values of Cp (CPHAT):

CPHAT=A*THETA

CPHAT (a column vector) =

8.512760e+00

8.536000e+00

8.579993e+00

8.644738e+00

8.730236e+00

8.836486e+00

8.963488e+00

4. Plot the predicted values of Cp against the test data to check the validity 
of the fit. The results are shown in Figure 3-1.

plot(T,CPHAT,{xlab="T (deg K)",ylab="Cp"})

plot(T,CP,{keep,markerstyle=5,

legend=["predicted values","observed values"]})

The experimental data and the quadratic curve fit show good 
agreement. 

Figure 3-1.  Predicted versus Observed Specific Heat
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4
Linear Programming

Linear Programming (LP) solves a number of interesting and practical 
problems. It is used to solve network flow problems as well as inventory 
control and investment portfolio problems. For general linear programming 
problems of moderate size (less than 80 variables), the lpopt( ) function 
in the Xmath Optimization Module performs very well.

For this class of problems, the Karmarkar based algorithm in the lpopt( ) 
function offers substantial advantages over the commonly used Simplex 
algorithm. An important difference is that, unlike Simplex, the lpopt( ) 
algorithm computes optimal search directions in the feasible set rather than 
using exhaustive search techniques. Just as importantly, the Linear 
Programming algorithm in the Xmath Optimization Module lets you 
control the accuracy of the solution. This is possible because the problem 
solving strategy computes upper and lower solution bounds at each step. 
You can control how closely the bounds approach each other. By increasing 
the value of tol (tolerance), you can obtain a less accurate solution with 
less computational effort. Conversely, decreasing tol gives a more 
accurate, but computationally costly solution. You decide how much effort 
you want to devote to your problem.

LPOPT( ) Function
[p,y,jh,zh] = lpopt(a,b,c,{zl,tol,beta})

The lpopt( ) function solves the general linear programming problem:

(4-1)

where cT is the 1 × n cost vector

A is the m × n coefficient matrix of linear constraints

b is an m × 1 vector of the right side of the constraint equation

p is the n × 1 vector of parameters

min cTp
p

Ap b=

p 0≥
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LPOPT Algorithm
The lpopt( ) solver in the Xmath Optimization Module uses the 
Karmarkar-type algorithms to compute the solution to the classical 
linear programming problem as shown in Equation 4-1.

At each iteration, the algorithm transforms p to the center of a Simplex and 
computes the feasible solution to the dual linear programming problem. 
It uses this updated dual problem solution to compute the parameter for the 
interior ellipsoid optimization problem. Finally, the algorithm transforms 
the interior point solution back into the correct parameter space. This 
procedure is repeated until the termination tolerance on upper and lower 
cost bounds is met. 

More formally, the algorithm proceeds as follows:

where b is a constant

e is a vector of ones the same size as the p vector

n is the dimension of the parameter vector

set (k = 0) given (p0, z0)

W = diag(pk)

solve for y1

solve for y2

compute u = (cTW – y2AW, y2b)T

v = (y1AW, 1 – y1b)T

then let θ(z) = min{u – zv}

z1 = sup{z:θ(z) ≤ 0}

then

then

AW2AT bbT+( )y1
T b=

AW2AT bbT+( )y2
T AW2c=

zk 1+

z1 if z1 zk≥

zk otherwise 
 
 

=

d u zk 1+ v–
cTpk zk 1+–

n 1+
---------------------------–=

a eβ dd
-------=

Pk 1+
Wa 1:n( )
a n 1+( )
---------------------=
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The algorithm continues until (cTpk – zk) < tol.

Setting up and running the LPOPT( ) function is straightforward in the 
Xmath environment. Create the A, B, and C matrices as Xmath variables 
and run the linear programming function with any desired option. For a 
complete description of the function syntax, refer to the MATRIXx Help.

For problems with inequality constraints, you first must map the problem 
into one with equality constraints using slack and/or surplus variables. This 
procedure1 is illustrated in the Application Example section.

Application Example

Refinery Optimization 
An oil refinery in Placitas, New Mexico, must order crude oil to 
manufacture its three main products: kerosene, gasoline, and jet fuel. Two 
types of crude oil are available as feedstock material: crude 1, which sells 
for $27 per barrel, and crude 2, which sells for $25 per barrel (current prices 
will vary). The fractional amounts of product that can be obtained from 
each barrel of the two types of crude are given in Table 4-1.

The refinery must produce the following numbers of barrels for each 
product:

Kerosine 900,000

Gasoline 800,000

Jet Fuel 500,000

How many barrels of each type of crude should the refinery buy to meet the 
production requirements and minimize its cost?

1   Luenberger, D. G., Linear and Nonlinear Programming, Addison Wesley Publishing Company, 1987.

Table 4-1.  Fractional Amounts of Products in Crude Oil

Feedstock  Kerosene  Gasoline  Jet fuel

crude 1  0.35  0.2  0.25

crude 2  0.29  0.4  0.25
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Formulation
If you let p = [p1 p2]T, where p1 is the number of barrels of crude 1 and p2 
is the number of barrels of crude 2, the problem can be expressed as:

where

(4-2)

To convert the problem into standard form with equality constraints only, 
introduce the surplus variables (y = [y1 y2 y3]T) and then formulate the 
problem as:

where

min
p

Ap b≥
p 0≥

cTp

cT 27  25,[ ]=

A
0.35 0.29
0.20 0.40
0.25 0.25

=

B
900 000
800 000
500 000

=

min cT
1
p

p
A1z b=

z 0≥

min cT
1
p

p
A1z b=

z 0≥
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where   optimization parameters and,

and b is as given in Equation 4-2. Solve the problem with an optimization 
tolerance of 1 × 10–3, and a relative step size of 0.9.

Optimization
To save calculation time, let the b values represent thousand barrel lots and 
c values represent price per thousand barrels. To define the cost/constraint 
variables in Xmath, enter the following:

set format shorte

a = [

0.35, 0.29, -1.00,  0.00,  0.00

0.20, 0.40,  0.00, -1.00,  0.00

0.25, 0.25,  0.00,  0.00, -1.00 ]; 

b = [ 900, 800, 500]';

c = [ 27000, 25000, 0, 0, 0]';

Call lpopt( ):

[p,y,jh,zh]=lpopt(a,b,c)

As the solution proceeds, lpopt( ) displays the following:

Starting search for a feasible solution…

Equality constraint error: 5.016295e-01

Equality constraint error: 5.224094e-01

Equality constraint error: 6.532657e-01

Equality constraint error: 0.000000e+00

Feasible solution found.

z p
y

=

A1 A
1– 0 0

0 1– 0
0 0 1–

=

c1
T cT 0 0 0[ ]=
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As lpopt( ) searches for the feasible solution set, it displays the amount 
of error in the equality constraints. When it is found, the algorithm 
approaches the optimal solution with successive upper and lower bounds 
to the cost.

Starting to search for the optimal solution…

Objective Value: 8.245058e+07 Lower Bound: 4.7 …

Objective Value: 7.590557e+07 Lower Bound: 7.0 …

Objective Value: 7.354306e+07 Lower Bound: 7.0 …

Objective Value: 7.284624e+07 Lower Bound: 7.2 …

Objective Value: 7.268279e+07 Lower Bound: 7.2 …

Objective Value: 7.264562e+07 Lower Bound: 7.2 …

Objective Value: 7.263681e+07 Lower Bound: 7.2 …

Objective Value: 7.263477e+07 Lower Bound: 7.2 …

Optimal solutions and shadow prices have been found.

p (a column vector) =

1.560839e+03

1.219685e+03

2.205234e-03

4.169563e-02

1.951309e+02

y (a column vector) =

7.073171e+04

1.121951e+04

1.081438e-03

jh (a row vector) = 2.645557e+08    8.245058e+07…

zh (a row vector) = 4.700973e+07    4.700973e+07…

Analysis
The final solution is returned in the p vector. To meet the production 
requirements with minimum cost, 1.5608 × 106 barrels of crude 1 and 
1.2197 × 106 barrels of crude 2 will be required. The total cost is the last 
element of the jh vector, $72.63 million dollars. The y vector contains the 
shadow prices for the three products produced by the refinery. Inspection 
of y shows that the cost to produce barrel number 900,001 of kerosene is 
$70.73 and that the incremental cost for a barrel of gasoline is $11.22. 
The obh vector contains the history of the objective function during the 
algorithm, and the zh vector shows the lower bound on the optimal cost 
for each step of the algorithm. Plot the vectors to examine convergence:

plot([zh',jh'],

{xlab="Iteration Number",ylab="$ Cost"})



Chapter 4 Linear Programming

© National Instruments Corporation 4-7 MATRIXx Xmath Optimization Module User Manual

Figure 4-1 shows how the upper and lower bounds converge quickly to an 
optimal estimate. 

Figure 4-1.  Convergence of Upper and Lower Bounds for an Optimal Estimate
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A
Technical Support and 
Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support 
include the following:

– Self-Help Resources—For immediate answers and solutions, 
visit the award-winning National Instruments Web site for 
software drivers and updates, a searchable KnowledgeBase, 
product manuals, step-by-step troubleshooting wizards, thousands 
of example programs, tutorials, application notes, instrument 
drivers, and so on.

– Free Technical Support—All registered users receive free Basic 
Service, which includes access to hundreds of Application 
Engineers worldwide in the NI Developer Exchange at 
ni.com/exchange. National Instruments Application Engineers 
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for 
self-paced training, eLearning virtual classrooms, interactive CDs, 
and Certification program information. You also can register for 
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, NI Alliance Program 
members can help. To learn more, call your local NI office or visit 
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.
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M
major and minor iterations, 2-10
MATRIXx Help, 1-3
MSF, cost( ), 2-2, 2-3

N
NI support and services, A-1
nomenclature, 1-2

O
optimization

constraints, 2-7
convergence, 2-8
discontinuities, 2-8
evaluation, 2-6
example, 2-15
feasible solution, 2-5
parameters, 2-2

optimize, 2-1

P
penalty parameter. See rho
piecewise constant functions, 2-8
programming examples (NI resources), A-1

Q
quadratic programming optimization

algorithm, 3-2
solution precision, 3-2

quadratic programming problem, 3-2

R
rho, 2-5

changing when problem is poorly 
behaved, 2-11

initial guess, 2-6

S
save, 2-3
software (NI resources), A-1
support, technical, A-1

T
technical support, A-1
training and certification (NI resources), A-1
troubleshooting (NI resources), A-1

W
Web resources, A-1
weighting factor (ρ). See rho
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