
MATRIXx TM

XmathTM Optimization Module
User Manual

MATRIXx Xmath Optimization Module User Manual

 April 2004 Edition
Part Number 370756B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055,
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838,
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 2000–2004 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
MATRIXx™, National Instruments™, NI™, ni.com™, SystemBuild™, and Xmath™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

© National Instruments Corporation v MATRIXx Xmath Optimization Module User Manual

Contents

Chapter 1
Introduction

Using This Manual...1-1
Document Organization...1-1
Commonly Used Nomenclature ..1-2
Related MATRIXx Publications ...1-2
Additional Related Publications ..1-3
MATRIXx Help...1-3

Getting Started ...1-3

Chapter 2
Nonlinear Programming

Optimize() ...2-1
Running Optimize()..2-2

Practical Considerations ..2-5
Finding a Feasible Solution ...2-5
Specifying the Penalty Parameter..2-5
Evaluating Results ...2-6
Reducing Constraints to Improve Performance and Efficiency2-7
Avoiding Discontinuities...2-8
Controlling the Numbers of Major and Minor Iterations2-10
Optimize Algorithm...2-11

Application Examples..2-13
Box Design ..2-14

Formulation...2-15
Optimization..2-15

Trajectory Optimization (Zermelo’s Problem)..2-17
Problem Definition..2-17
Formulation...2-17
Optimization..2-21
Analysis...2-23

Feedback Control Design ..2-24
Problem Definition..2-24
Optimization..2-28
Analysis...2-30

Contents

MATRIXx Xmath Optimization Module User Manual vi ni.com

Chapter 3
Quadratic Programming

QPOPT() Function.. 3-1
QPOPT Algorithm... 3-2
Application Example ... 3-3

Curve Fitting with Quadratic Programming ... 3-3
Solving the Curve Fitting Problem... 3-5

Chapter 4
Linear Programming

LPOPT() Function .. 4-1
LPOPT Algorithm ... 4-2
Application Example ... 4-3

Refinery Optimization... 4-3
Formulation... 4-4
Optimization.. 4-5
Analysis... 4-6

Appendix A
Technical Support and Professional Services

Index

© National Instruments Corporation 1-1 MATRIXx Xmath Optimization Module User Manual

1
Introduction

This chapter starts with an outline of the manual and some use notes. It also
provides information about getting started with the Optimization Module.

Using This Manual
This manual is a guide to performing engineering optimization using the
Xmath Optimization Module.

To get the most out of the Optimization Module, you will need a working
knowledge of Xmath and its MathScript analysis language. If you have
never used Xmath, refer to the Xmath User Guide.

Document Organization
Chapters 2 through 4 of this manual focus on a single function. They define
the mathematics of the problem solved by the function and provide
step-by-step examples of problem solving sessions.

This manual includes the following chapters:

• Chapter 1, Introduction, starts with an outline of the manual and some
use notes. It also provides information about getting started with the
Optimization Module.

• Chapter 2, Nonlinear Programming, details the optimize function
for general nonlinear programming. The optimize function is the
most general and powerful function. It is fully integrated with Xmath
and SystemBuild.

• Chapter 3, Quadratic Programming, details the quadratic
programming function qpopt.

• Chapter 4, Linear Programming, details the linear optimization
programming function lpopt.

Chapter 1 Introduction

MATRIXx Xmath Optimization Module User Manual 1-2 ni.com

Commonly Used Nomenclature
This manual uses the following general nomenclature:

• Matrix variables are generally denoted with capital letters; vectors are
represented in lowercase.

• G(s) is used to denote a transfer function of a system where s is the
Laplace variable. G(q) is used when both continuous and discrete
systems are allowed.

• H(s) is used to denote the frequency response, over some range of
frequencies of a system where s is the Laplace variable. H(q) is used to
indicate that the system can be continuous or discrete.

• A single apostrophe following a matrix variable, for example, ,
denotes the transpose of that variable. An asterisk following a matrix
variable (for example, A*) indicates the complex conjugate, or
Hermitian, transpose of that variable.

Related MATRIXx Publications
For a complete list of MATRIXx publications, refer to Chapter 2,
MATRIXx Publications, Help, and Customer Support, of the MATRIXx
Getting Started Guide. The following MATRIXx publications are
particularly useful for topics covered in this manual:

• MATRIXx Getting Started Guide

• Xmath User Guide

• Control Design Module

• Interactive Control Design Module

• Interactive System Identification Module, Part 1

• Interactive System Identification Module, Part 2

• Model Reduction Module

• Optimization Module

• Robust Control Module

• Xµ Module

x'

Chapter 1 Introduction

© National Instruments Corporation 1-3 MATRIXx Xmath Optimization Module User Manual

Additional Related Publications
The following additional references on optimization also are useful for
topics covered in this manual:

• “An Extension of Karmarkar’s Algorithm and the Trust Region
Method for Quadratic Programming,” Progress in Mathematical
Programming, Y. Y. Ye, N. Megiddo, editor, Springer-Verlag, 1989.

• Linear and Nonlinear Programming, Luenberger, D. G., Addison
Wesley Publishing Company, 1987.

• Ph.D. Dissertation, Y. Y. Ye, Department of Engineering, Economic
Systems, Stanford University, 1987.

• Practical Optimization, Gill, P. E., Murray, W. and Wright, M. H.,
Academic Press, 1981.

MATRIXx Help
Optimization Module function reference information is available in the
MATRIXx Help. The MATRIXx Help includes all Optimization functions.
Each topic explains a function’s inputs, outputs, and keywords in detail.
Refer to Chapter 2, MATRIXx Publications, Help, and Customer Support,
of the MATRIXx Getting Started Guide for complete instructions on using
the Help feature.

Getting Started
Before using the Optimization Module, you should feel comfortable with
the following:

• Creating/editing text files in your computer’s operating system

• Creating Xmath MathScript functions (MSFs)

• Creating, editing, and addressing vectors and matrices

• Saving and loading data

• Plotting

If you intend to use the optimize() function with nonlinear dynamic
systems, you also should familiarize yourself with SystemBuild. You will
want to know how to do the following:

• Build system models

• Linearize nonlinear models

• Generate time responses

Chapter 1 Introduction

MATRIXx Xmath Optimization Module User Manual 1-4 ni.com

When you know the Xmath and SystemBuild basics, you are ready to begin
optimization. Complete function syntax and examples are available online.
This document discusses details pertaining to each algorithm and suggests
problem solving techniques. Application examples are provided for each
function.

Each example includes the following procedures:

• Problem Setup

• Syntax Options

• Analysis

© National Instruments Corporation 2-1 MATRIXx Xmath Optimization Module User Manual

2
Nonlinear Programming

The optimize() function solves the general nonlinear programming
problem shown in Equation 2-1.

(2-1)

where p is the n × 1 vector of optimization parameters must be real.

F(p) is the scalar valued cost (objective) function.

G(p) is the vector valued equality constraint function.

H(p) is the vector valued inequality constraint function.

hl and hu are the lower and upper limits for the inequality
function.

pl and pu are the lower and upper limits for the optimization
parameters.

In general, F(·), G(·), and H(·) are any nonlinear functions that can be
specified and computed using Xmath or SystemBuild. The constraint
equations and parameter bounds need not be specified. This flexibility
results in a wide variety of problem solving capabilities, which are
illustrated in the examples in this chapter.

Optimize()
[P,Jh,L,H,IC,Ph]=optimize(P0,{Pmin,Pmax,ICmin,ICmax,L0,

H0,IC0,rho,majit,minit,delta,tol})

Conditions and parameters for operation of the function that invokes the
optimize() function are set up in two places:

• The user furnishes the values of the cost and constraints through a
MathScript function (MSF) named COST(), which is executed by
optimize() whenever it needs the appropriate functions for a set of

min F p()
p

G p() 0=

hl H p() hu≤ ≤

pl p pu≤ ≤

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-2 ni.com

candidate parameters evaluated. optimize() computations include
the cost function F(p), an optional equality constraint function G(p),
and an optional inequality constraint function H(p).

• All other parameters are specified as parameters of the optimize()
function call, including:

– Initial values and bounds for the optimization parameters

– Bounds for the inequality constraint equations

– A penalty parameter controlling the search for a feasible solution

– Maximum numbers of major and minor iterations

– Numerical gradient perturbation parameters

– A tolerance parameter on optimality and feasibility

For a detailed description of each optimize() input, output, and
keyword, refer to the Xmath Help.

Running Optimize()
The Optimization Module provides an interface between MathScript and
graphical modeling in SystemBuild. As shown in Figure 2-1 and in the
following procedure, running optimize() in Xmath is a straightforward
process.

Figure 2-1. Running Optimize()

1. Create a MathScript function (MSF) named cost.msf() using any
text editor. Your function computes the cost that is to be minimized and
also calculates the constraint functions.

2. Specify input variables and execute the optimize() function.
optimize() calls the cost.msf() as many times as its operations
require.

Create MSF using text editor

Analyze results; re-optimize as needed

Run optimize in Xmath

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-3 MATRIXx Xmath Optimization Module User Manual

3. As the algorithm executes, you can monitor its progress by displaying
intermediate values and/or creating plots in the cost function. Upon
completion, all results are returned to Xmath’s command level for
quick access to the Xmath system analysis, post processing, and
simulation capabilities. To save any of the variables computed by the
cost function, use the Xmath SAVE command or select File»Save All
from the Xmath Commands menu.

The objective function and any constraint functions are specified in
cost.msf(). This means that any dynamic or static system performance
measure can be defined quickly and easily. Waveform math, matrix algebra,
frequency response analysis, and time simulations are some of the
operations that can be used in defining problems. Example 2-1 is a template
for cost.msf().

Example 2-1 Template for cost.msf()

cost function syntax:

function [out]=cost(p,it)

#{ p is the list of parameter vectors cost.msf uses to evaluate

the cost and constraint function values.

it (iteration) informs the cost function that optimize() has

completed a major or minor iteration:

it<0 a minor iteration has completed a gradient evaluation

occurs once per minor cycle)

it=0 a gradient or search evaluation

it>0 major iteration completed

}#

cost_at_p = () # insert cost to be minimized (scalar):

equality_at_p = () #{ compute value(s) of equality function(s)

and place them in the variable equal (a column vector). Skip this step

if equality constraints are unnecessary.

}#

inequality_at_p = () #{compute value(s) of inequality

function(s) and place them in the variable inequal (a column vector).

If inequality constraints are specified, the number of values must

match the number of upper and lower inequality constraints specified

in the optimize call. Skip this step if inequality constraints are

unnecessary.

}#

#{ put results in out, omitting any variables that were not

computed above.

}#

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-4 ni.com

out=[cost_at_p;equality_at_p;inequality_at_p];

#{ display or store any intermediate results here using the

variable it to determine points of major and minor

iterations.

}#

endfunction

The cost() function accepts the column vector of optimization
parameters p and the scalar variable it, and returns the argument out.
In the body of cost(), the user specifies how p will be used to compute
the cost() function and (optionally) any equality and/or inequality
constraints. Any command or function that can be issued at the Xmath
prompt can be used to compute these performance measures.
optimize() calculates the number of constraints by finding the size of
out (the variable returned by the cost function) and determines the number
of inequality constraints by checking IC0. If m equality constraints and
n inequality constraints are specified, the out vector returns (m + n + 1)
elements ordered as shown in Table 2-1.

The iter input parameter informs cost() of the completion of a major
or minor iteration. iter signals any one of three possible conditions in the
optimization process after that event has occurred as shown in Table 2-2.

The iter input parameter can be used to customize the run-time
information displayed on the screen (or in the log file, if the optimization
job is run in batch mode). Data can be analyzed, displayed, plotted, or saved

Table 2-1. Out Vector

Position Description Optional (y/n)

1 Objective (COST) n

2: m + 1 Equality Constraints y

m + 2: m + n + 1 Inequality Constraints y

Table 2-2. Iter Possibilities

Condition Situation

iter < 0 The gradient evaluation

iter = 0 Gradient or search evaluation

iter > 0 Major iteration completed

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-5 MATRIXx Xmath Optimization Module User Manual

to the disk at minor and/or major iterations. The optimize() process is
illustrated in the examples given in the Application Examples section. Both
unconstrained and constrained nonlinear optimization problems are set up,
implemented, and solved. The Optimize Algorithm section details how the
optimize() algorithm works and the Practical Considerations section
discusses some practical approaches that aid in using optimize()
effectively and efficiently. Detailed demo files supporting the examples in
the Application Examples section are included with the software so you can
follow along with the text and quickly come up to speed with optimization.

Practical Considerations
The optimize() algorithm has been designed to handle a broad range of
engineering problems with as few restrictions on problem definition as
possible. The following subsections discuss several points to consider
when using optimize(). In most situations, following these guidelines
will mean faster and more efficient convergence.

Finding a Feasible Solution
A feasible candidate solution should at least meet all the constraint criteria,
even if it is not optimal or near optimal. If optimize() is having
difficulties converging to a feasible minimum for a constrained
optimization problem, try altering the original problem to help
optimize() solve it more efficiently. One way to do this is to modify
cost() so that it keeps the cost constant whenever the error in the
constraint equation—that is, the difference between the current candidate
parameter and the feasible range—is large. This means that the true cost
will be computed only when optimize() has found a feasible (or near
feasible) solution. Forcing optimize() to concentrate on finding a
feasible region before searching for an optimal solution will get the best
results from the algorithm.

Specifying the Penalty Parameter
The penalty parameter, ρ, is used to control the distance that the
optimization search is allowed to travel outside the feasible range to seek
an optimal solution. A value of this parameter greater than 1 forces the
search to stay close to the known feasible range; a smaller value of ρ allows
a broader range of searching. The default value, 1, allows an intermediate
range of search.

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-6 ni.com

Another way of understanding the role of the penalty parameter is as a
weighting factor. The higher the value of ρ, the more emphasis will be put
on bringing (or keeping) the parameters inside the feasible region. Be
cautious when using large values of ρ, because a large ρ might make the
problem ill-conditioned. NI suggests not exceeding ρ = 1,000. In most
situations, the default value of ρ will result in good performance of the
nonlinear optimization routine. In other cases, it may be necessary to
specify a good initial guess for the penalty parameter.

For smooth problems, several guidelines may help you find a good initial
guess. If a good solution to a similar problem is known, the value of the
penalty parameter from the successful optimization will provide a good
first guess for the current problem. If you have absolutely no idea about
how to find an initial penalty parameter, try ρ = 1. In most cases, difficulties
associated with a poor initial choice for the penalty parameter can be
avoided by specifying reasonable bounds on the parameters.

For non-smooth problems, the difficulties associated with selecting a good
initial penalty parameter are not as severe. In this case, a good strategy is to
choose a large value for the initial parameter. This will help ensure that the
subproblem will have the desired local minimum. If the penalty parameter
from a successful optimization of a similar problem is available, start the
optimization with a slightly smaller value of the successful penalty
parameter. If no Help is available, try 10. Try to place reasonable bounds
on the variables to reduce the problem’s sensitivity to the penalty
parameter.

In general, there is no systematic way of choosing the best value for the
penalty parameter. Some problems can be extremely sensitive to this
parameter, thus making subproblems poorly conditioned whenever the
penalty parameter is too small or too large. It is important to remember
what effect this parameter can have, and that it may only be possible to find
a good value through trial and error. For more details, refer to the Penalty
Functions section and the Penalty Parameters section of Practical
Optimization.1

Evaluating Results
After the algorithm has completed the optimization, be careful to check that
the optimal value meets any additional criteria implied by common sense.
For example, the final result should be a true minimum; at least, it should
be considerably smaller than the initial result.

1 Gill, P. E., Murray, W., and Wright, M. H., Practical Optimization, Academic Press, 1981.

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-7 MATRIXx Xmath Optimization Module User Manual

Reducing Constraints to Improve Performance and Efficiency
Constraints add a great deal of complexity to the general optimization
problem. It is always advantageous for the user to simplify, reduce,
or completely eliminate constraints. With general formulation of the
optimize() function, several types of constraints are possible. Equality
constraints and inequality constraints are the most general classification.
These constraints can be linear or nonlinear in the optimization parameters.
Optimization with inequality constraints is the most difficult problem to
solve, and nonlinear constraints pose greater difficulties than linear
constraints. With careful specification, constraints can be simplified and
the optimization will be performed more efficiently and with fewer
problems.

Always check the constraint equation and first eliminate any redundant or
unnecessary constraints. Next, try to replace or simplify any constraints,
or replace the constraints with bounds on the parameters. In some cases,
a transformation of variables will be helpful. The following problem,

can be converted into an unconstrained minimization problem by letting:

The problem then becomes to minimize:

If this is not possible, then try to turn nonlinear constraints into linear
constraints. Finally, try to combine and simplify constraint equations to
keep the same limitation on the problem using a smaller number of simpler
equations. The effort of simplifying the constraints beforehand is a wise
investment toward making the optimization process much more efficient
and robust, but often it is difficult to decide when or how to make the
modifications.

Transformations can introduce very undesirable properties in the
optimization problem—for example, discontinuities, periodicity in the
optimization parameters, singularities, poor scaling, and a greater number
of minima. For this reason, simplify the constraints only after full

min x1 2+()2 x2 1+()2+

x1 0≥

x1 z1
2= and z2

z1
2 2+()

2
z2 1+()2+

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-8 ni.com

consideration of the pitfalls which may result. When in doubt, do not
simplify.

Eliminating redundant parameters is as important as eliminating redundant
constraints. The following transfer function is an example:

This expression has five parameters: a, b, c, d, and e. However, the same
transfer function can be expressed as

where

This reduces the number of parameters from five to four.

Avoiding Discontinuities
Like most optimization algorithms, convergence of the optimize()
function can be guaranteed only when the objective function and any
constraint functions are sufficiently smooth. Discontinuities should be
avoided whenever possible. Discontinuities can arise from seemingly
insignificant sources in problem formulation and definition. Be careful
to avoid these common pitfalls:

• Table Lookup—Linear interpolation table lookup functions are a
common, but avoidable, source of discontinuities in the formulation of
an optimization problem. Table lookups are continuous in the function
along all interior points, but the first derivative of the function will be
piecewise constant with linear interpolation. Because table lookups are
often used to approximate continuous data, there is little or no loss of
accuracy involved with providing a smooth approximation—for
example, by using the spline() function in Xmath to smooth a
linear interpolation.

• Piecewise Constant Functions—Piecewise constant functions such
as non-interpolated table lookup and sampled data time histories can
pose significant problems in optimization. If the resolution of a
computation is coarse, numerical gradients will not be accurate.

h s() as b+
cs2 ds e+ +
----------------------------=

h s()
k1s k2+

s2 k3s k4+ +
------------------------------=

k1
a
c
---= k2, b

c
---= k3, d

c
---= and, k4

e
c
--=

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-9 MATRIXx Xmath Optimization Module User Manual

This results in slow convergence or poor algorithm performance. Two
courses of corrective action may improve the performance of the
algorithm:

– Interpolation (preferably with a continuously differentiable
algorithm)

– Finer resolution (more samples) in the function

• Function Switching—Avoid situations where the objective function
or any constraint functions contain computations that change in
structure (switching from one formula to another) as a function of the
parameter values. When such a function must be included, make sure
that the function outputs and first derivatives match at all switching
conditions.

• Iterative Algorithms—If you use an iterative algorithm to compute
the objective and/or constraint functions and you have specified
tolerances considerably larger than the machine constants, nontrivial
discontinuities can occur. A common example occurs when a variable
step algorithm is used to evaluate an integral; successive iterations of
the optimization algorithm may result in varying local accuracy along
the output trajectory. The function and/or its gradients will not be
smooth functions of the parameters. In certain cases, the error can be
substantial. This error can be avoided by using fixed step methods or a
very small local error tolerance for the variable step method. Another
option is to increase the size of the perturbation used in gradient
step-size whenever this retains the integrity of the gradient
computation. In most cases, it will be difficult to determine the proper
balance between integration algorithm accuracy and the gradient
perturbation, so try a fixed step integration algorithm.

NI advises that you define step size for numerical derivatives so
changes due to perturbing the parameters are greater than the errors in
the integration, or else you will end up with derivative of integration
noise with respect to your parameters. For example, if the numerical
integration is good to ±.01 and you expected results to change by .001
when you perturb the parameter, you cannot tell the difference. You
either can make the integration error specification tighter (a precision
of .0001) or boost the perturbation so the expected change is
one-tenth (.1).

When using SystemBuild, avoid using integration blocks or saturation
blocks as limiters. If saturation is reached, optimize() does not get
anything useful. Rather, make the signals sim outputs so that the
optimization algorithm can use constraints to do the limiting.

These and other important considerations are discussed in greater
detail in the Specifying the Penalty Parameter section.

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-10 ni.com

Controlling the Numbers of Major and Minor Iterations
In an attempt to achieve convergence, the optimize() function divides
the general nonlinear programming problem into a series of linearly
constrained nonlinear programming steps to approximate the actual
nonlinear problem; these are the major iterations of the function. The major
iteration linearizes the constraints and tries to find a feasible solution for the
linearized problem. It then passes it to the minor iteration(s).

The minor iterations use quadratic methods to find a solution within the
linear constraints. When the minor iterations are complete or a solution is
found, optimize() returns to the major iteration. These ideas are
illustrated in Figure 2-2.

Figure 2-2. Major and Minor Iterations

Many optimization problems are sensitive to the number of either major
or minor iterations, but it is difficult to give general rules for assigning
these variables, because they are intensely problem-dependent. Ten is the
default setting for the number of both major and minor iterations. This is
intentionally generous; often performance can be enhanced with no loss
of accuracy by using smaller numbers for either or both parameters. It is
easy to study this effect, because the calls to the COST MSF contain the
indication that this call is for a major or a minor iteration, and one can
see if, for example, more minor iterations give an evidently better local
solution, or if they are just a waste of time.

Linearly
Constrained
Nonlinear
Program

Nonlinear
Programming

Problem

Major
Iteration

Minor
Iteration

Quadratic
Program

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-11 MATRIXx Xmath Optimization Module User Manual

For some problems, the constraints influence the iterations greatly. This is
true if the solution from the minor iterations falls beyond the true nonlinear
constraints. If the solution to the constraints is twice as bad as the solution
from the previous major iteration, ρ will be increased. If it is safely within
the tolerances, ρ will be decreased.

The higher ρ is, the more important the constraints are. If ρ is small, it is
more tolerant. If your problem is poorly behaved when the constraints are
violated, you want to push the solution towards the constraints by
increasing ρ and tightening the constraints.

The constraint used in the minor iteration quadratic program is only a
linear approximation. This means some inaccuracy may result because
of nonlinearities in the actual constraints. If your constraints are highly
nonlinear, you may want to reduce the number of minor iterations so
that the linear approximation will be updated more often.

Optimize Algorithm
When given the general nonlinear programming problem, optimize()
converts Equation 2-1 into Equation 2-2.

(2-2)

where G is a combination of G and H:

optimize() solves the problem by first constructing a
linearly-constrained optimization problem with an Augmented
Lagrangian objective function shown in Equation 2-3,

min F p()
p̂

Ĝ p̂() 0=

p̂l p̂ p̂u≤ ≤

Ĝ
H p() s–

G p()
 = Let

p̂
p
s

 =

p̂u
pu
hu

=

p̂l
pl
hl

=

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-12 ni.com

(2-3)

where J is a numerical approximation to the Jacobian:

(2-4)

and is the vector of Lagrange multipliers at step k (the first step,
by default). This problem is solved with an iterative algorithm for the
variables and . For the new problem, the first step involves
checking to see if satisfies the linear constraints.

If is not a feasible solution, Equation 2-4 is solved to generate a valid
initial condition for subsequent iterations.

Next, sequential quadratic programming (SQP) is implemented to solve
Equation 2-3. You calculate the gradient vector and update the Hessian
matrix (Equation 2-5) of the Augmented Lagrangian objective of
Equation 2-3 to obtain the second-order approximation to the objective
function Φ () in the quadratic programming (QP) problem in
Equation 2-6.

The Hessian matrix is updated as follows
(Broyden-Fletcher-Goldfarb-Shanno):

where

then

(2-5)

min F p̂() ŷkĜ p̂() ρ
2
---Ĝ p̂()TĜ p̂()+ Φ p̂()≡–

p̂

Jk p̂ p̂k–() Ĝ p̂k()–=
p̂l p̂ p̂u≤ ≤

Jk
∂Ĝ p̂()

∂p̂
---------------= p̂ p̂k=

ŷk ŷ0 0=

p̂k 1+ ŷk 1+
p̂k

J p̂ p̂k–() Ĝ p̂k()–=

p̂l p̂ p̂u≤ ≤

p̂k

ĝk

p̂

∆p p̂k 1+ p̂k–=

∆g ĝk 1+ ĝk–=

H H 1
∆pTH∆p
---------------------H∆p∆pTH 1

∆gT∆p
----------------∆g∆gT+–=

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-13 MATRIXx Xmath Optimization Module User Manual

(2-6)

where H
k
 is a Hessian for Φ and is a gradient for the

Augmented Lagrangian objective function Φ .

The optimize() function uses the interior trust region method1 to reach
an approximate solution for QP (Equation 2-6). A line search technique
provides a step size for Equation 2-3 and is used to generate the minimal
solution .

If the optimal QP solution is both feasible and optimal for Equation 2-3,
optimize() returns to the beginning. Otherwise, it updates the Hessian
matrix (Equation 2-5) for the subproblem Equation 2-6 and solves the QP
problem. This repeats until the optimal local solution is found or until the
maximum number of minor iterations is computed.

The final solution and multiplier that result from the QP process are
 and . These values are returned to solve for the next subproblem

(Equation 2-3). When Equation 2-3 converges to a local minimum for
Equation 2-2, the algorithm is complete.

Application Examples
This section illustrates a variety of applications for the optimize()
function. The first example shows how to optimize() the volume of
a box, the second solves a trajectory optimization problem, and the last
optimizes the response of a third order nonlinear system. This group of
applications demonstrates the approaches and procedures you will need to
begin solving your own optimization problems. Each application has four
phases:

• Problem Definition—Define the system and performance objectives.

• Formulation—Specify the system cost and constraint equations using
Xmath and SystemBuild commands and functions in the cost.msf
file.

1 Y. Y. Ye, Ph.D. Dissertation, Dept. of Engineering-Economic Systems, Stanford University, 1987.

min 1
2
--- p̂ p̂k–()

T
Hk p̂ p̂k–() ĝk p̂ p̂k–()+

p̂

Jk p̂ p̂k–() Ĝ p̂k()–=
p̂l p̂ p̂u≤ ≤

p̂k() ĝk()
p̂k()

p̂

p̂

p̂ ŷ
p̂k 1+ ŷk 1+

p̂

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-14 ni.com

• Optimization—Use the optimize() function to compute and solve
optimization problems.

• Analysis—Examine the preliminary solution. If the algorithm does
not converge in the specified number of iterations, the optimize()
function can be restarted. The algorithm can be run with different
parameters or from another initial condition to test the assumptions
about a local minimum.

To get the most out of these application examples, you should know how to
create a MathScript function (MSF). For instructions on creating an MSF,
refer to the MATRIXx Help or Xmath Basics.

Box Design
The objective of this example is to find the height, width, and length that
give a box a total volume of 100 m3 and minimize the amount (surface
area) of cardboard required. The situation is illustrated in Figure 2-3. The
only restrictions are that each box side must be greater than 1 m and less
than 10 m in length.

Figure 2-3. Box Optimization

p1

p2

p3

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-15 MATRIXx Xmath Optimization Module User Manual

Formulation
As shown in Figure 2-3, the dimensions of the box are p1, p2, and p3. The
top and bottom of the box have double flaps so that the surface area of the
top and bottom is 4p1p2. The total surface area of cardboard required is as
follows:

This is the quantity to be minimized and it will be returned as the first value
from the cost.msf file. The second argument to be returned is the
difference between the actual and desired volume: G(p) = p1p2p3 – 100.

This argument defines the equality constraint that requires the volume of
the box to be exactly 100 m3. These equations are coded in a MathScript
file named cost.msf.

#Cost function for the box optimization problem.

function out=cost(p,iter)

out=[

4*p(1)*p(2)+2*p(2)*p(3)+2*p(1)*p(3) # surface

p(1)*p(2)*p(3)-100];# vol -100

endFunction

In the cost.msf file, J(p) = out(1) and G(p) = out(2). In a
directory of your choice, create cost.msf as shown in the Optimization
section.

Now you are ready to run the optimization in Xmath.

Optimization
To run optimize() on this example, complete the following steps:

1. Enter Xmath and define the parameter bounds for each dimension of
the box:

pmin=ones(3,1);pmax=10*pmin;

2. Make p0 equal to the average of the upper and lower bounds, thus:

p0=(pmax+pmin)/2;

3. Execute the optimize() function:

[p,jh,l]= opti(p0,{pmin=pmin,pmax=pmax,

rho=1,majit=5,minit=10,delta=1e-6,tol=1e-6})

J p() 4p1p2 2p2p3 2p1p3+ +=

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-16 ni.com

The optimize() function computes successive estimates of the
parameter dimensions and the error in the volume of the box. While
running, optimize() displays the current major iteration and current
minor iteration. The current value of the cost() function (J) is also
displayed. These are output to the screen with each iteration until the
maximum number of major iterations is reached or optimize() is
completed.

In Example 2-2, optimize() returns the final parameter estimate p and
the history of cost values (surface areas) jh after five major iterations are
computed. l is the Lagrange multiplier.

Example 2-2 Running optimize() on the Box Dimensions

Beginning minor iteration 1

Beginning minor iteration 2

Beginning minor iteration 3

Updated parameters: 3.51798 3.51798 7.26982

Beginning major iteration 2, J=151.805

Beginning minor iteration 1

Beginning minor iteration 2

Beginning minor iteration 3

Beginning minor iteration 4

Beginning minor iteration 5

Beginning minor iteration 6

Updated parameters: 3.75321 3.75319 7.1079

Beginning major iteration 3, J=163.055

Beginning minor iteration 1

Beginning minor iteration 2

Updated parameters: 3.74731 3.74728 7.12137

Beginning major iteration 4, J=162.912

Beginning minor iteration 1

Updated parameters: 3.74724 3.74721 7.12165

Beginning major iteration 5, J=162.912

Beginning minor iteration 1

Updated parameters: 3.74723 3.74721 7.12166

Completed in 5 iterations

p (a column vector) =

3.74723

3.74721

7.12166

jh (a row vector) = 242 151.805 163.055…

l (a scalar) = 1.09409

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-17 MATRIXx Xmath Optimization Module User Manual

Trajectory Optimization (Zermelo’s Problem)

Problem Definition
In this example, a ship must travel through water where the current varies
with (x,y) location. Given any initial point (xo, yo), you want to find the
trajectory of the ship that will place it at the origin (0,0) in minimum time.
In this example, assume that the ship travels at a constant speed V, that the
current flows in the x direction, as shown in Figure 2-4, and that the speed
of the current varies linearly with y position.

Figure 2-4. Ship Trajectory Optimization Problem

Formulation
The problem solving strategy is to constrain the final (x,y) position of
the ship to (0,0) and minimize the time it takes the ship to reach this origin.
The cost() function parameters are the total time and the value of the
steering angle at eleven evenly-spaced time points. The cost() function
takes the inputs and simulates the motion of the ship over the time interval.
It computes the final position and returns the total time employed and the
final distance from the origin.

y

x

V

0,0

xo,yo

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-18 ni.com

The first step is to write the equations of motion for the ship in the
coordinate system of Figure 2-4.

Recall that the current acts only in the x direction and is a linear function of
the ship’s y position.

The next step is to implement these equations in a SystemBuild block
diagram where you can simulate the (x,y) ship position as the input angle

 varies.

The block diagram for the equations of motion is shown in Figure 2-5. It
takes θ, calculates the right side of the differential equation, and integrates
the velocities to give x and y positions.

Before proceeding with the example, start SystemBuild and load the data
file for this model from the demo directory appropriate to your operating
system.

Figure 2-5. Ship Block Diagram

build

load "$XMATH/demos/ship/ship.dat"

For V = 1, x· Vcosθ ky+=
y· Vsinθ=

y· sinθ=
x· cosθ y–=

k = –1

θ tk()

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-19 MATRIXx Xmath Optimization Module User Manual

Initial conditions for this example are set in the SystemBuild integrator
block at:

The cost() function for this example is shown in Example 2-3.

Example 2-3 cost() function

#{For clarity we use unnecessary calculations and temporary values in the

code below. This slows down the optimization procedure.}#

function [out]=cost(p,iter)

theta=p(1:11);

tf=p(12);# final time

time=[0:.1:1]'*tf;# time vector

xy=sim("ship",time,theta,{simclock=0,simmessage=0});

temp=makematrix(xy);

xf=temp(1,11);

yf=temp(2,11); # final x and y positions

r=xf**2+yf**2;# distance to the origin

out=[tf;r];# out=[objectv;eq_constr]

x=temp(1,:);y=temp(2,:);

if iter>0# plot at major iteration

plot(x,y,{xmin=-1,xmax=5,ymin=-2,ymax=3,keep})?

endif

endFunction

Note It is more efficient to define the single constraints than to have two constraints.

You can copy the previous cost function to your working directory with the
following Xmath command:

fprintf("cost.msf","%s",read("$XMATH/demos/ship/cost.ms

f"),{reset});

This MSF takes an input steering angle (as a function of time) and
computes the trajectory and final (x,y) position of the ship through the
sim() function. The only tricky part of the cost() function is the
specification of the course heading as a function of time.

The set of steering angles (θ) is specified at 11 evenly-spaced time points
(theta=p(1:11)).

xo yo,() 3.5 1.8–,()=

G1 p() x tf()2 y tf()2+ 0= =

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-20 ni.com

To determine the total time (the goal is to minimize the time to reach the
origin), recompute the simulation time vector from the normalized time
column vector time before each simulation: time=[0:.1:1]'*tf.

This vector is the scaled time vector for the simulation. This gives the
algorithm complete control over the total time needed to reach the origin.
tf(p(12)) is returned as the first element of the out vector. This
parameter will be minimized by the optimize() function. The sum
squared of the terminal position (x,y coordinates) is returned as the equality
constraint because you want the terminal position to be at the origin (0,0).

Note It is more efficient to define the single constraints G1(p) = x(tf)2 + y(tf)2 = 0 than to
have two constraints.

The final line of the cost() function checks to see if a major iteration has
been completed. Upon completion of an iteration, the cost() function
plots the ship’s x,y trajectory.

1. After the cost.msf file has been created, create the parameter bounds
. As arbitrarily large numbers, they are not expected

to have much effect on the convergence process.

plower = [-2*pi*ones(11,1);0];

pupper = [2*pi*ones(11,1);20];

It is tempting to constrain the steering angle θ to be between 0 and 2π,
or between −π and π, but this would prevent the ship from completing
more than one circle.

2. For an initial guess at the correct steering trajectory, assume that the
ship maintains a constant heading in the general direction of the origin.

p0 = ones(11,1)*pi*2/3;

3. We guess that the ship will take five seconds to reach the origin:

p0 = [p0;5];

4. Run the cost() function with the initial parameters. The graphics
window displays a plot of trajectory from the initial parameter (refer to
Figure 2-6).

cost(p0,1);

2π θ t() 2π≤ ≤–

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-21 MATRIXx Xmath Optimization Module User Manual

Figure 2-6. Plot of Trajectory

Optimization
For the optimization phase, the penalty parameter rho is set to 1. The
number of major and minor iterations are set empirically to 10 and 3.
The tuning parameters have been reduced to cut the running time of the
example.

[p,jh,l]= opti(p0,{pmin=plower,pmax=pupper,

rho=1,majit=10,minit=3,delta=1e-4,tol=1e-2})

As the optimization proceeds, intermediate cost and constraint values are
displayed, and updated parameters are output at each major iteration. A plot
of the ship’s trajectory is also created at each major iteration. Optimization
is completed in six iterations as shown in Example 2-4.

The final plot is shown in Figure 2-7. The initial parameter plot is included
in the graph because cost.msf() uses the keep keyword with plot().
If you do not want the plots combined, type erase in the Commands
window command area before running optimize().

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-22 ni.com

Example 2-4 Optimization of Ship Trajectory

Completed in 6 iterations

p (a column vector) =

1.54072

1.7487

2.31885

2.39624

1.68404

2.19942

2.91508

3.23675

3.5521

4.06592

3.71046

5.36374

jh (a row vector) = 5 4.41321 4.77413 …

l (a scalar) = -16.5989

Figure 2-7. Ship Trajectory Plot

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-23 MATRIXx Xmath Optimization Module User Manual

Analysis
The final time value is 5.36374. Figure 2-8 shows the initial response
plotted with the final time value. To create this plot, type:

erase

cost(p0,1)

cost([p;5.36374],1)

Figure 2-8. Initial versus Optimal Trajectory

This was a concise but very nonlinear trajectory optimization problem. Had
you chosen a greater number of minor iterations, you might have obtained
a faster or better solution. If the tolerance had been reduced, or allowed to
run at default, the problem would have taken considerably longer to
converge.

As previously illustrated, one useful feature of optimize() is the ability
to change the iteration parameters and tolerances to help convergence at
any intermediate point in the optimization process, without having to start
over again or go through extensive work to compile, redefine, or resubmit
the optimization job.

Also, observe that the value of the constraint has been reduced by the last
iteration, and the divergence from the origin of the last two iterations is
scarcely visible in Figure 2-7.

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-24 ni.com

Feedback Control Design

Problem Definition
In this example, you use optimize() to specify feedback control logic
for the closed-loop system shown in Figure 2-9.

Figure 2-9. Closed-Loop Control System Model

The objective is to find the values of the feedback gain parameters K1 and
K2, along with the compensator coefficient parameters p1 and p2 such that
the response at y from a step input at u is as good as the saturation specified
in the actuator will allow.

You want the output signal to follow the input step as closely as possible
while keeping the maximum percentage overshoot less than 5% (refer to
Figure 2-10). Your working strategy is to constrain the overshoot and hope
that an acceptable settling time results. If the overshoot criteria are met, but
the settling time is unacceptable, the problem can be reformulated.

The first step is to create a SuperBlock diagram based on the model (refer
to Figure 2-9). The model system has a single input where the step input is
applied, and a single output where the position response is measured.

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-25 MATRIXx Xmath Optimization Module User Manual

Figure 2-10. Desired Step Response

Table 2-3 shows the parameters and their initial values and how they will
be used in the SuperBlock.

You can load the model shown in Figure 2-11 from the demo directory with
the following command:

load ="$XMATH/demos/system/system.dat"

Table 2-3. Parameters and Initial Values

Block Parameter Value Parameter

compensator NUM=[p1, p2] [1,1] vector of numerator coefficients

compensator DEN=[1,p2] [1,1] vector of denominator coefficients

rate gain K1 1 rate gain

position gain K2 1 position gain

1.05 u(t)

1.00 u(t)

y(t)

step applied

t

overshoot limit

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-26 ni.com

Figure 2-11. Closed-Loop SuperBlock

Alternatively, you can define a continuous SuperBlock called SYSTEM and
build the model as shown in Figure 2-11. When defining the block named
Compensator NUM DEN, use the values of the variables NUM and DEN. The
form for the block compensator should duplicate the values shown in
Figure 2-12 (from the Parameters tab of the SystemBuild Editor). When
defining the gain blocks named rate gain and position gain, use the
appropriate values of K1 and K2. Finally, parameterize NUM, DEN, K1, and K2
in the appropriate blocks.

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-27 MATRIXx Xmath Optimization Module User Manual

Figure 2-12. Designating Parameters

The SuperBlock SYSTEM contains a saturation block. You know in advance
that saturation will not be reached, so this is acceptable for this example.
However, saturation blocks, or any blocks that might introduce
nonlinearities, should be avoided. If saturation is reached, optimization
stops. Another way to handle this problem is to remove the saturation block
and limit the signal with icmin=-1, icmax=1 as described in the Avoiding
Discontinuities section.

After the SYSTEM model is built, create cost.msf, which uses the model
to compute the performance parameters. You can copy the cost function to
your working directory with the following Xmath command:

fprintf("cost.msf","%s",read("$XMATH/demos/system/cost.

msf"),{reset});

Because the SYSTEM model uses parameterized values as shown in
Example 2-5, cost.msf must specify the partition name along with the
variable name—for example, main.num—so that SystemBuild can find
and update the values.

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-28 ni.com

Example 2-5 Specifying Feedback Control Logic

Function [out]=cost(p,it)

main.num=[p(1), p(2)];

main.den=[1, p(2)];

main.k1=p(3);

main.k2=p(4);

t=[0:.1:10]';

u=ones(t);

[,y]=sim("SYSTEM",t,u,{simclock=0,simmessage=0});

minimize the difference between the command and the output:

out(1)=norm(y-ones(y));

out(2)=100*(max(y)-1); # percent overshoot

plot at major iterations:

if it>0

plot(t,y,{keep})?

endif

endFunction

The cost.msf() function accepts model parameters in the K vector.
First, the p vector is converted into the SystemBuild model parameters NUM,
DEN, K1, and K2. Next, the time and simulation vectors are created and used
to simulate the step response. After the output signal is returned, cost()
computes the rise time and overshoot. Whenever a major iteration is
completed, cost() displays the step response. The plot() function
keeps the plots for final comparison.

Optimization
1. To view the initial step response, type the following values from

Table 2-1:

p0=[1, 1, 1, 1]';

num=[p0(1), p0(2)];

den=[1, p0(2)];

k1=p0(3); k2=p0(4);

2. Analyze SYSTEM to verify it:

analyze("SYSTEM")

3. Try cost() with the initial parameters:

cost(p0,1)

The result in Figure 2-13 shows that the step response is stable, but the
overshoot is greater than the required 5%.

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-29 MATRIXx Xmath Optimization Module User Manual

Figure 2-13. Step Response with Initial Parameters

4. Start optimize().

Use the default value of ρ, 1. You are arbitrarily guessing you might
need a large number of major iterations (20), but you are reducing the
number of minor iterations to 5 in hopes of shortening running time.
Set the perturbation parameter delta to 1 × 10–4 and the tolerance to
1 × 10–3.

[P,JH,L] = opti(p0,{icmin=0,icmax=5,

pmin=zeros(4,1),pmax=ones(4,1)*100,

rho=1, majit=20, minit=5,delta=1e-4,tol=1e-3})

As the optimization proceeds, you will see the following warning in the
commands window message area:

MINOR OPTIMIZATION ROUTINE DID NOT CONVERGE IN THE

SPECIFIED NUMBER OF MINOR ITERATIONS. YOU MAY NEED TO

INCREASE THE NUMBER OF MINOR ITERATIONS.

This message indicates an intermediate point in the processing. It does
not imply that the algorithm has failed or that the solution is invalid.
Optimization completes in seven iterations as shown in Example 2-6.

Chapter 2 Nonlinear Programming

MATRIXx Xmath Optimization Module User Manual 2-30 ni.com

Example 2-6 Optimization Iterations

Beginning major iteration 7, J=2.93744

Beginning minor iteration 1

Updated parameters: 2.88236 0.476158 0.527184…

Completed in 7 iterations

P (a column vector) =

2.88236

0.476158

0.527184

1.03561

JH (a row vector) = 3.24032 3.14864 3.13624 …

L (a scalar) = -0.0115143

Figure 2-14. System Responses

Analysis
optimize() computes a parameter set that drastically improves the step
response of the closed-loop system. The overshoot is limited to 5% as
shown in Figure 2-14.

Chapter 2 Nonlinear Programming

© National Instruments Corporation 2-31 MATRIXx Xmath Optimization Module User Manual

Figure 2-15 plots the initial step response against the final response.

erase

cost(p0,1)

cost([P;2.93744],1)

Figure 2-15. Initial Step Response versus Optimal Response

© National Instruments Corporation 3-1 MATRIXx Xmath Optimization Module User Manual

3
Quadratic Programming

Quadratic Programming (QP) finds a number of useful applications in
engineering, finance, and operations research. Over the years, a number of
techniques have been used, but recent algorithmic advances have made
QP computation very efficient and robust. The Xmath Optimization
Module employs this new class of algorithms in the function qpopt().

This chapter describes the structure and implementation of the QP solver.
The QPOPT() Function section covers the mathematical formulation of
the QP problem and qpopt() syntax. The QPOPT Algorithm section
highlights the algorithmic details that make up qpopt(). The application
example in the Application Example section uses qpopt() to solve a
nonlinear curve fitting problem.

QPOPT() Function
[p,y,jh] = qpopt(q,{c,a,b,xmin,xmax,tol})

The qpopt() function solves the quadratic programming problem.

(3-1)

where p is the n × 1 vector of real optimization parameters

Q is the n × n quadratic cost matrix (symmetric) in the
objective function

cT is the 1 × n linear cost vector

A is the m × n linear equality constraints matrix (optional)

b is the m × 1 constraint vector

pl is the lower parameter bound

pu is the upper parameter bound

min 1
2
--- pTQp() cTp+

p
Ap b=

pl p pu≤ ≤

Chapter 3 Quadratic Programming

MATRIXx Xmath Optimization Module User Manual 3-2 ni.com

Regarding the outputs:

p is the optimal solution

y is the optimal shadow price (vector of Lagrange multipliers
for equality constraints)

jh is the history of objective function values over iterations

QPOPT Algorithm
The QP solver in the Xmath Optimization Module is an extension of
Karmarkar’s interior point algorithm for solving the linear programming
problem. The algorithm uses affine scaling transformation and
optimization over a trust ellipsoid region. It creates a series of interior
feasible points that converge to the optimal solution.

Because the QPOPT algorithm is based on the interior point algorithm, it is
more efficient than most common QP algorithms. Enhancements to the
basic algorithm allow the solution to be computed to any user-defined
accuracy. This also can mean substantial savings in situations where you
require only five digits of accuracy instead of full machine precision.
Together, these differences make the qpopt() utility an attractive and
efficient means of solving the QP problem.

The QP problem is defined as shown in Equation 3-1. Assume that the
interior of the feasible region is not empty. From an interior solution p

k
, the

qpopt algorithm first forms D = diag(d) as follows:

(3-2)

and then solves the Quadratic Programming optimality conditions for p
and y:

(3-3)

where e is a vector of ones the same size as the p vector

y is the Lagrange multiplier for the equality constraint

m is the Lagrange multiplier at step k for the interior
ellipsoidal trust region constraint

d j min pk
j pl

j– pu
j pk

j–,()= for j 1 ...,, n=

D diag d()=

min Qp µkD
2– p ATy cT µkD

1– e–+–+
p

Ap b=

Chapter 3 Quadratic Programming

© National Instruments Corporation 3-3 MATRIXx Xmath Optimization Module User Manual

If p is not feasible or a satisfactory solution, set µk = 2µk and solve
Equation 3-3 again for p and y. Otherwise, return pk = p. For more
information about this algorithm, its convergence properties, and how
it compares with other strategies, refer to the references listed in the
Additional Related Publications section of Chapter 1, Introduction.

For a complete description of each qpopt() input, output, and keyword,
refer to the qpopt topic of the MATRIXx Help.

Application Example

Curve Fitting with Quadratic Programming
This example shows how qpopt() is used to fit a polynomial equation to
test data. Specific heat measurements for superheated steam are given as a
function of absolute temperature in Table 3-1.

You want to fit this data to a second order polynomial:

Table 3-1. Specific Heat Measurements for Superheated Steam

i T(k)

1 400 8.4944

2 425 8.5589

3 450 8.5800

4 475 8.6728

5 500 8.6924

6 525 8.8236

7 550 8.9816

cal
deg mol–()

----------------------------Cp

Cp θ1T
2 θ2T θ3+ +=

Chapter 3 Quadratic Programming

MATRIXx Xmath Optimization Module User Manual 3-4 ni.com

The problem is to find θ = [θ1, θ2, θ3]T such that the sum of the squared
estimation error is minimized. More formally,

noting that:

You can rewrite Equation 3-1 as:

or,

which is the same as:

This is the unconstrained quadratic programming problem with:

Cp i() Cp θ T i(),()–[]

i 1=

7

∑

Cp θ T i(),() Aθ=

T 1
2 T1 1

T 2
2 T2 1

… … …

T 7
2 T7 1

=

min
θ

Cp Aθ Cp Aθ–,〈 〉–

min
θ Cp

TCp 2Cp
TAθ θTATAθ+()–

min
θ

1
2
---θT Qθ cTθ+()

cT 2Cp
TA–=

Q 2ATA=

Chapter 3 Quadratic Programming

© National Instruments Corporation 3-5 MATRIXx Xmath Optimization Module User Manual

Solving the Curve Fitting Problem
To solve the problem, set up the cost variables in Xmath by completing the
following steps:

1. Enter the following:

set format shorte

T=[400:25:550]';

CP=[8.4944, 8.5589, 8.5800,8.6728, 8.6924, 8.8236,

8.9816];

A=[T^2, T, ones(T)];

C=(-2*CP*A)';

Q=2*A'*A;

Note All QP vectors must be column vectors.

2. Call qpopt():

[THETA,Y,JH]=qpopt(Q,{C=C})

The following results appear:

Problem is unconstrained.

Solvable unbounded, unconstrained problem.

The unique stationary solution has been found

THETA (a column vector) =

1.660190e-05

-1.276695e-02

1.096324e+01

Y (a scalar) = 0.000000e+00

JH (a scalar) = -5.283228e+02

Chapter 3 Quadratic Programming

MATRIXx Xmath Optimization Module User Manual 3-6 ni.com

3. Find the predicted values of Cp (CPHAT):

CPHAT=A*THETA

CPHAT (a column vector) =

8.512760e+00

8.536000e+00

8.579993e+00

8.644738e+00

8.730236e+00

8.836486e+00

8.963488e+00

4. Plot the predicted values of Cp against the test data to check the validity
of the fit. The results are shown in Figure 3-1.

plot(T,CPHAT,{xlab="T (deg K)",ylab="Cp"})

plot(T,CP,{keep,markerstyle=5,

legend=["predicted values","observed values"]})

The experimental data and the quadratic curve fit show good
agreement.

Figure 3-1. Predicted versus Observed Specific Heat

© National Instruments Corporation 4-1 MATRIXx Xmath Optimization Module User Manual

4
Linear Programming

Linear Programming (LP) solves a number of interesting and practical
problems. It is used to solve network flow problems as well as inventory
control and investment portfolio problems. For general linear programming
problems of moderate size (less than 80 variables), the lpopt() function
in the Xmath Optimization Module performs very well.

For this class of problems, the Karmarkar based algorithm in the lpopt()
function offers substantial advantages over the commonly used Simplex
algorithm. An important difference is that, unlike Simplex, the lpopt()
algorithm computes optimal search directions in the feasible set rather than
using exhaustive search techniques. Just as importantly, the Linear
Programming algorithm in the Xmath Optimization Module lets you
control the accuracy of the solution. This is possible because the problem
solving strategy computes upper and lower solution bounds at each step.
You can control how closely the bounds approach each other. By increasing
the value of tol (tolerance), you can obtain a less accurate solution with
less computational effort. Conversely, decreasing tol gives a more
accurate, but computationally costly solution. You decide how much effort
you want to devote to your problem.

LPOPT() Function
[p,y,jh,zh] = lpopt(a,b,c,{zl,tol,beta})

The lpopt() function solves the general linear programming problem:

(4-1)

where cT is the 1 × n cost vector

A is the m × n coefficient matrix of linear constraints

b is an m × 1 vector of the right side of the constraint equation

p is the n × 1 vector of parameters

min cTp
p

Ap b=

p 0≥

Chapter 4 Linear Programming

MATRIXx Xmath Optimization Module User Manual 4-2 ni.com

LPOPT Algorithm
The lpopt() solver in the Xmath Optimization Module uses the
Karmarkar-type algorithms to compute the solution to the classical
linear programming problem as shown in Equation 4-1.

At each iteration, the algorithm transforms p to the center of a Simplex and
computes the feasible solution to the dual linear programming problem.
It uses this updated dual problem solution to compute the parameter for the
interior ellipsoid optimization problem. Finally, the algorithm transforms
the interior point solution back into the correct parameter space. This
procedure is repeated until the termination tolerance on upper and lower
cost bounds is met.

More formally, the algorithm proceeds as follows:

where b is a constant

e is a vector of ones the same size as the p vector

n is the dimension of the parameter vector

set (k = 0) given (p0, z0)

W = diag(pk)

solve for y1

solve for y2

compute u = (cTW – y2AW, y2b)T

v = (y1AW, 1 – y1b)T

then let θ(z) = min{u – zv}

z1 = sup{z:θ(z) ≤ 0}

then

then

AW2AT bbT+()y1
T b=

AW2AT bbT+()y2
T AW2c=

zk 1+

z1 if z1 zk≥

zk otherwise

=

d u zk 1+ v–
cTpk zk 1+–

n 1+
---------------------------–=

a eβ dd
-------=

Pk 1+
Wa 1:n()
a n 1+()
---------------------=

Chapter 4 Linear Programming

© National Instruments Corporation 4-3 MATRIXx Xmath Optimization Module User Manual

The algorithm continues until (cTpk – zk) < tol.

Setting up and running the LPOPT() function is straightforward in the
Xmath environment. Create the A, B, and C matrices as Xmath variables
and run the linear programming function with any desired option. For a
complete description of the function syntax, refer to the MATRIXx Help.

For problems with inequality constraints, you first must map the problem
into one with equality constraints using slack and/or surplus variables. This
procedure1 is illustrated in the Application Example section.

Application Example

Refinery Optimization
An oil refinery in Placitas, New Mexico, must order crude oil to
manufacture its three main products: kerosene, gasoline, and jet fuel. Two
types of crude oil are available as feedstock material: crude 1, which sells
for $27 per barrel, and crude 2, which sells for $25 per barrel (current prices
will vary). The fractional amounts of product that can be obtained from
each barrel of the two types of crude are given in Table 4-1.

The refinery must produce the following numbers of barrels for each
product:

Kerosine 900,000

Gasoline 800,000

Jet Fuel 500,000

How many barrels of each type of crude should the refinery buy to meet the
production requirements and minimize its cost?

1 Luenberger, D. G., Linear and Nonlinear Programming, Addison Wesley Publishing Company, 1987.

Table 4-1. Fractional Amounts of Products in Crude Oil

Feedstock Kerosene Gasoline Jet fuel

crude 1 0.35 0.2 0.25

crude 2 0.29 0.4 0.25

Chapter 4 Linear Programming

MATRIXx Xmath Optimization Module User Manual 4-4 ni.com

Formulation
If you let p = [p1 p2]T, where p1 is the number of barrels of crude 1 and p2
is the number of barrels of crude 2, the problem can be expressed as:

where

(4-2)

To convert the problem into standard form with equality constraints only,
introduce the surplus variables (y = [y1 y2 y3]T) and then formulate the
problem as:

where

min
p

Ap b≥
p 0≥

cTp

cT 27 25,[]=

A
0.35 0.29
0.20 0.40
0.25 0.25

=

B
900 000
800 000
500 000

=

min cT
1
p

p
A1z b=

z 0≥

min cT
1
p

p
A1z b=

z 0≥

Chapter 4 Linear Programming

© National Instruments Corporation 4-5 MATRIXx Xmath Optimization Module User Manual

where optimization parameters and,

and b is as given in Equation 4-2. Solve the problem with an optimization
tolerance of 1 × 10–3, and a relative step size of 0.9.

Optimization
To save calculation time, let the b values represent thousand barrel lots and
c values represent price per thousand barrels. To define the cost/constraint
variables in Xmath, enter the following:

set format shorte

a = [

0.35, 0.29, -1.00, 0.00, 0.00

0.20, 0.40, 0.00, -1.00, 0.00

0.25, 0.25, 0.00, 0.00, -1.00];

b = [900, 800, 500]';

c = [27000, 25000, 0, 0, 0]';

Call lpopt():

[p,y,jh,zh]=lpopt(a,b,c)

As the solution proceeds, lpopt() displays the following:

Starting search for a feasible solution…

Equality constraint error: 5.016295e-01

Equality constraint error: 5.224094e-01

Equality constraint error: 6.532657e-01

Equality constraint error: 0.000000e+00

Feasible solution found.

z p
y

=

A1 A
1– 0 0

0 1– 0
0 0 1–

=

c1
T cT 0 0 0[]=

Chapter 4 Linear Programming

MATRIXx Xmath Optimization Module User Manual 4-6 ni.com

As lpopt() searches for the feasible solution set, it displays the amount
of error in the equality constraints. When it is found, the algorithm
approaches the optimal solution with successive upper and lower bounds
to the cost.

Starting to search for the optimal solution…

Objective Value: 8.245058e+07 Lower Bound: 4.7 …

Objective Value: 7.590557e+07 Lower Bound: 7.0 …

Objective Value: 7.354306e+07 Lower Bound: 7.0 …

Objective Value: 7.284624e+07 Lower Bound: 7.2 …

Objective Value: 7.268279e+07 Lower Bound: 7.2 …

Objective Value: 7.264562e+07 Lower Bound: 7.2 …

Objective Value: 7.263681e+07 Lower Bound: 7.2 …

Objective Value: 7.263477e+07 Lower Bound: 7.2 …

Optimal solutions and shadow prices have been found.

p (a column vector) =

1.560839e+03

1.219685e+03

2.205234e-03

4.169563e-02

1.951309e+02

y (a column vector) =

7.073171e+04

1.121951e+04

1.081438e-03

jh (a row vector) = 2.645557e+08 8.245058e+07…

zh (a row vector) = 4.700973e+07 4.700973e+07…

Analysis
The final solution is returned in the p vector. To meet the production
requirements with minimum cost, 1.5608 × 106 barrels of crude 1 and
1.2197 × 106 barrels of crude 2 will be required. The total cost is the last
element of the jh vector, $72.63 million dollars. The y vector contains the
shadow prices for the three products produced by the refinery. Inspection
of y shows that the cost to produce barrel number 900,001 of kerosene is
$70.73 and that the incremental cost for a barrel of gasoline is $11.22.
The obh vector contains the history of the objective function during the
algorithm, and the zh vector shows the lower bound on the optimal cost
for each step of the algorithm. Plot the vectors to examine convergence:

plot([zh',jh'],

{xlab="Iteration Number",ylab="$ Cost"})

Chapter 4 Linear Programming

© National Instruments Corporation 4-7 MATRIXx Xmath Optimization Module User Manual

Figure 4-1 shows how the upper and lower bounds converge quickly to an
optimal estimate.

Figure 4-1. Convergence of Upper and Lower Bounds for an Optimal Estimate

© National Instruments Corporation A-1 MATRIXx Xmath Optimization Module User Manual

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For immediate answers and solutions,
visit the award-winning National Instruments Web site for
software drivers and updates, a searchable KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, thousands
of example programs, tutorials, application notes, instrument
drivers, and so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 MATRIXx Xmath Optimization Module User Manual

Index

A
algorithm

iterative, 2-9
Karmarkar (interior point), 3-2
linear programming, 4-1
lpopt(), 4-2
optimization, 2-11
quadratic programming, 3-2
simplex, 4-1

C
constraints, adjusting iterations to, 2-11
conventions used in the manual, iv
cost and feasible solution, 2-5, 2-13
cost MSF, 2-3

computation specifications, 2-4
constraints, 2-2
parameterized variables in, 2-27
parameters to function call, 2-2
template, 2-3

cost.msf(), 2-2, 2-3, 2-5

D
diagnostic tools (NI resources), A-1
documentation

conventions used in the manual, iv
NI resources, A-1

drivers (NI resources), A-1

E
example

box design, 2-14
curve fitting, 3-3
feedback control design, 2-24
refinery optimization, 4-3
trajectory optimization, 2-17

examples (NI resources), A-1

F
function switching, 2-9

H
help, technical support, A-1

I
instrument drivers (NI resources), A-1

K
KnowledgeBase, A-1

L
linear programming (LP)

classical problem, 4-2
procedure, 4-3

linear programming problem, 4-1
lpopt(), 4-1

Index

MATRIXx Xmath Optimization Module User Manual I-2 ni.com

M
major and minor iterations, 2-10
MATRIXx Help, 1-3
MSF, cost(), 2-2, 2-3

N
NI support and services, A-1
nomenclature, 1-2

O
optimization

constraints, 2-7
convergence, 2-8
discontinuities, 2-8
evaluation, 2-6
example, 2-15
feasible solution, 2-5
parameters, 2-2

optimize, 2-1

P
penalty parameter. See rho
piecewise constant functions, 2-8
programming examples (NI resources), A-1

Q
quadratic programming optimization

algorithm, 3-2
solution precision, 3-2

quadratic programming problem, 3-2

R
rho, 2-5

changing when problem is poorly
behaved, 2-11

initial guess, 2-6

S
save, 2-3
software (NI resources), A-1
support, technical, A-1

T
technical support, A-1
training and certification (NI resources), A-1
troubleshooting (NI resources), A-1

W
Web resources, A-1
weighting factor (ρ). See rho

	Xmath Optimization Module User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	Using This Manual
	Document Organization
	Commonly Used Nomenclature
	Related MATRIXx Publications
	Additional Related Publications
	MATRIXx Help

	Getting Started

	Chapter 2 Nonlinear Programming
	Optimize()
	Running Optimize()
	Figure 2-1. Running Optimize()
	Table 2-1. Out Vector
	Table 2-2. Iter Possibilities

	Practical Considerations
	Finding a Feasible Solution
	Specifying the Penalty Parameter
	Evaluating Results
	Reducing Constraints to Improve Performance and Efficiency
	Avoiding Discontinuities
	Controlling the Numbers of Major and Minor Iterations
	Figure 2-2. Major and Minor Iterations

	Optimize Algorithm

	Application Examples
	Box Design
	Figure 2-3. Box Optimization
	Formulation
	Optimization

	Trajectory Optimization (Zermelo’s Problem)
	Problem Definition
	Figure 2-4. Ship Trajectory Optimization Problem
	Formulation
	Figure 2-5. Ship Block Diagram
	Figure 2-6. Plot of Trajectory
	Optimization
	Figure 2-7. Ship Trajectory Plot
	Analysis
	Figure 2-8. Initial versus Optimal Trajectory

	Feedback Control Design
	Problem Definition
	Figure 2-9. Closed-Loop Control System Model
	Figure 2-10. Desired Step Response
	Table 2-3. Parameters and Initial Values
	Figure 2-11. Closed-Loop SuperBlock
	Figure 2-12. Designating Parameters
	Optimization
	Figure 2-13. Step Response with Initial Parameters
	Figure 2-14. System Responses
	Analysis
	Figure 2-15. Initial Step Response versus Optimal Response

	Chapter 3 Quadratic Programming
	QPOPT() Function
	QPOPT Algorithm
	Application Example
	Curve Fitting with Quadratic Programming
	Table 3-1. Specific Heat Measurements for Superheated Steam
	Solving the Curve Fitting Problem
	Figure 3-1. Predicted versus Observed Specific Heat

	Chapter 4 Linear Programming
	LPOPT() Function
	LPOPT Algorithm
	Application Example
	Refinery Optimization
	Table 4-1. Fractional Amounts of Products in Crude Oil

	Formulation
	Optimization
	Analysis
	Figure 4-1. Convergence of Upper and Lower Bounds for an Optimal Estimate

	Appendix A Technical Support and Professional Services
	Index
	A-L
	M-W

